• Title/Summary/Keyword: axial dispersion reactor model

Search Result 6, Processing Time 0.016 seconds

Developing numerical method to predict the removal of Microcystin-LR in a clear well

  • Yeo, Inhee;Park, Yong-Gyun;Kim, Dooil
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.173-179
    • /
    • 2018
  • Microcystin-LR, one of algal toxins induced by the eutrophication of a reservoir, is known to be harmful to human by adversely affecting our liver and brain. Hypochlorous acid is very efficient to remove Microcystin-LR in a clear well. The previous researches showed that CT, pH and temperature affected removal rate in batch tests. It was noted that hydrodynamic properties of clear well could also influence its removal rate. A mathematical model was built using an axial dispersion reactor model and software was used to simulate the removal rate. The model consisted of the second order differential equations including dispersion, convection, Microcystin-LR reaction with chlorine. Kinetic constants were obtained through batch tests with chlorine. They were $0.430{\times}10^{-3}L/mg/sec$ and $0.143{\times}10^{-3}L/mg/sec$ for pH 7.0 and 8.1, respectively. The axial dispersion reactor model was shown to be useful for the numerical model through conservative tracer tests. The numerical model successfully estimated the removal rate of Microcyctin-LR in a clear well. Numerical simulations showed that a small dispersion number, low pH and long hydraulic retention time were critical for higher removal rate with same chlorine dosage. This model could be used to optimize the operation of a clear well during an eutrophication season.

Modeling and analysis of an LDPE autoclave reactor with axial dispersion

  • Park, Seung-Koo;Wi, Jeong-Ho;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1693-1698
    • /
    • 1991
  • An axial dispersion model is developed for the slim reactor employed in the LDPE autoclave process so that imperfect mixing caused by large L/D ratio (10-20) may be quantified by Peclet number. The model is then used to investigate the effect of mixing on the reactor performance represented by the monomer conversion, the reactor temperature, the molecular weight, and the polydispersity. In addition, the existence of steady state multiplicity is identified with the initiator feed concentration or the feed temperature as the bifurcation parameter. The effects of the initiator feed concentration and the feed temperature are also examined.

  • PDF

Kinetic Behavior of Immobilized Tyrosinase on Carbon in a Simulated Packed-Bed Reactor (충전층에서 탄소에 고정시킨 Tyrosinase의 반응속도에 관한 연구)

  • Shin, Sun Kyoung;Kim, Kyeo-Keun
    • Analytical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.66-74
    • /
    • 1997
  • Influence of the axial dispersion on immobilized enzyme catalytic bed was investigated in order to examine the kinetic behavior of the biocatalysis. The enzyme employed in this study was the tyrosinase(EC 1.14.18.1) immobilized on carbon support : this system requires two substrates of phenol and oxygen. This enzyme has potential application for phenol degradation in waste water. A simulated reactor was a packed-bed reactor of 2.54cm in diameter and 10cm long, loaded with the immobilized carbon particle with an average diameter of $550{\mu}m$. A phenol feed in the strength of 55.5mM(5220ppm) was used to observe the behavior of the immobilized enzyme column at three different dissolved oxygen levels of 0.08445mM(2.7ppm), 0.1689mM(5.4ppm) and 0.3378mM(9.5ppm) with the flow rates in the range of 60(1mL/s) to 180mL/min(3mL/s). Examination of the Biot number and Damkolher numbers of the immobilized system enables us to eliminate the contribution of external mass transfer to set of differential equations derived from the dispersion model. Solution of the equation was finally obtained numerically with the application of the Danckwert boundary conditions and the assumed zero-and first order rates on the non-linear two substrate enzyme kinetics. Higher conversion of phenol was observed at the low flow rates and at the higher oxygen concentration. Comparison of axial dispersion and plug flow model showed that no detectable difference was observed in the column outlet conversion between the axial and the plug flow models which was in complete agreement with the previous studies.

  • PDF

Dynamic Characteristics of External loop Air-Lift Reactor (외부 순환 공기리프트 반응기의 동특성)

  • 강귀현;김춘영정봉우
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.59-65
    • /
    • 1992
  • Hydrodynamics and mixing characteristics such as circulation time, mixing time, circulation velocity and axial dispersion coefficient were investigated using highly viscous pseudoplastic solutions of carboxymethyl cellulose(CMC) in an external circulation loop air-lift reactor with 13$\ell$ working volume. The superficial gas velocity was changed from 1.9 to 6.2cm/s and CMC concentration from 0 to 1.0wt%. The theoretical model based on the pressure balance is developed mathematically to predict liquid circulation velocity. Gas hold-up, circulation velocity and axial dispersion coefficient of liquid phase increased with increasing gas velocity and decreased slightly with increasing liquid viscosity. Mixing time and circulation time decreased with increasing gas velocity and increased with increasing liquid viscosity. Experimental data on liquid circulation velocity were in good agreement with the predicted values.

  • PDF

Mathematical Model for a Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi, Jeong-Woo;Min, Ju-Hong;Lee, Won-Hong;Lee, Sang-Back
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate, biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the gas phase. The difference of setting velocity along the column height due to the distributions of size and number of bioparticle was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected by the superficial gas velocity.

  • PDF

Trichloroethylene Treatment by Zero-Valent Iron and Ferrous Iron with Iron-Reducing Bacteria - Model Development (영가철 및 철환원균을 이용한 2가 산화철 매질에 의한 TCE 제거 연구 - 모델수립)

  • Bae, Yeun-Ook;Kim, Doo-Il;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1146-1153
    • /
    • 2008
  • Numerical simulation was carried out to study the trichloroethylene (TCE) degradation by permeable reactive barrier (PRB), and revealed the effect of concentration of TCE, iron medium mass, and concentration of iron-reducing bacteria (IRB). Newly developed model was based on axial dispersion reactor model with chemical and biological reaction terms and was implemented using MATLAB ver R2006A for the numerical solutions of dispersion, convection, and reactions over column length and elapsed time. The reaction terms include reactions of TCE degradation by zero-valent iron (ZVI, Fe$^0$) and ferrous iron (Fe$^{2+}$). TCE concentration in the column inlet was maintained as 10 mg/L. Equation for Fe$^0$ degradation includes only TCE reaction term, while one for Fe$^{2+}$ has chemical and biological reaction terms with TCE and IRB, respectively. Two coupled equations eventually modeled the change of TCE concentration in a column. At Fe$^0$ column, TCE degradation rate was found to be more than 99% from 60 hours to 235 hours, and declined to less than 1% in 1,365 hours. At the Fe$^{2+}$ and IRB mixed column, TCE degradation rate was equilibrated at 85.3% after 210 hours and kept it constant. These results imply that the ferrous iron produced by IRB has lowered the TCE degradation efficiency than ZVI but it can have higher longevity.http://kci.go.kr/kciportal/ci/contents/ciConnReprerSearchPopup.kci#