• Title/Summary/Keyword: axial deformation-rotation interaction

Search Result 4, Processing Time 0.016 seconds

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.

Rotational capacity of shallow footings and its implication on SSI analyses

  • Blandon, Carlos A.;Smith-Pardo, J. Paul;Ortiz, Albert
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.591-617
    • /
    • 2015
  • Standards for seismic assessment and retrofitting of buildings provide deformation limit states for structural members and connections. However, in order to perform fully consistent performance-based seismic analyses of soil-structure systems; deformation limit states must also be available for foundations that are vulnerable to nonlinear actions. Because such limit states have never been established in the past, a laboratory testing program was conducted to study the rotational capacity of small-scale foundation models under combined axial load and moment. Fourteen displacement-controlled monotonic and cyclic tests were performed using a cohesionless soil contained in a $2.0{\times}2.0{\times}1.2m$ container box. It was found that the foundation models exhibited a stable hysteretic behavior for imposed rotations exceeding 0.06 rad and that the measured foundation moment capacity complied well with Meyerhof's equivalent width concept. Simplified code-based soil-structure analyses of an 8-story building under an array of strong ground motions were also conducted to preliminary evaluate the implication of finite rotational capacity of vulnerable foundations. It was found that for the same soil as that of the experimental program foundations would have a deformation capacity that far exceeds the imposed rotational demands under the lateral load resisting members so yielding of the soil may constitute a reliable source of energy dissipation for the system.

Behavior Analysis and Empirical Relation for a Flexible Disk with High Speed Rotation (고속회전 유연디스크의 거동해석과 경험식)

  • Lee, Ho-Ryul;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.245-250
    • /
    • 2006
  • Organizations such as broadcasting stations and libraries which deal with huge amount of information require high-capacity storage systems for archiving their materials and information. It is necessary and urgent for the storage people to develop a compact, high capacity, and low-cost data storage systems. Even though the Blue-ray technology is commercialized and now it is on the market, demand for the compact and low-cost system is still increasing. A flexible disk system has been introduced recently to satisfy above mentioned requirements. The system uses multiple of thin disks and is expected to achieve technical requirements. However, decreasing the disk thickness makes it difficult to read and write data because it decreases the disk rigidity so that the transverse vibration of the rotating disk increases easily due to both the interaction with surrounding air and the vibration characteristics of thin flexible disk itself. In this study, flat-type stabilizer is proposed to suppress the transverse vibration of a $95{\mu}m$-thick polycarbonate disk. Characteristics of disk vibration have been studied through the results of numerical analysis from the fluid mechanics point of view. Numerical simulation is verified through the experiment by measuring the gap between the rotating disk and the stationary flat stabilizer. The axial deflections of the disk are computed for various rotating speeds and reference gap sizes and then a method of regression is applied to those data. As a result, an empirical relation is proposed for the steady deformation shape of the rotating disk.

  • PDF

A simple mathematical model for static analysis of tall buildings with two outrigger-belt truss systems

  • Rahgozar, Reza;Ahmadi, Ali Reza;Hosseini, Omid;Malekinejad, Mohsen
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.65-84
    • /
    • 2011
  • In this paper a simple mathematical model for approximate static analysis of combined system of framed tube, shear core and two outrigger-belt truss structures subjected to lateral loads is presented. In the proposed methodology, framed tube is modeled as a cantilevered beam with a box section and interaction between shear core and outrigger-belt truss system with framed tube is modeled using torsional springs placed at location of outrigger-belt truss; these torsional springs act in a direction opposite to rotation generated by lateral loads. The effect of shear lag on axial deformation in flange is quadratic and in web it is a cubic function of geometry. Here the total energy of the combined system is minimized with respect to lateral deflection and rotation in plane section. Solution of the resulting equilibrium equations yields the unknown coefficients of shear lag along with the stress and displacement distributions. The results of a numerical example, 50 storey building subjected to three different types of lateral loading obtained from SAP2000 are compared to those of the proposed method and the differences are found to be reasonable. The proposed method can be used during the preliminary design stages of a tall building and can provide a better understanding of the effects of various parameters on the overall structural behavior.