• Title/Summary/Keyword: axial compressive strength

Search Result 410, Processing Time 0.035 seconds

The Ductile Behavior of High-Strength R/C Columns Subjucted to Reversed Cyclic and Axial Loads (축력과 반복횡력을 받는 고강도 R/C기둥의 연성거동 확보)

  • 신성우;이지영;한범석;안종문;이광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.507-512
    • /
    • 1998
  • An experimental investigation was conducted to examine the behavior of high strength R/C columns subjected to reversed cyclic and axial loads and to find the relationship between amounts of lateral reinforcement and axial loads ratios. The test parameters of column specimens were the compressive strength of concrete($f`_c$=250, 320, 460, $517kg/\textrm{cm}^2), $ the yield strength of longitudinal steel($f_y$=3700, $5254kg/\textrm{cm}^2), $ axial load ratio(0.3, 0.5, 0.6$f`_cA_g$). The results indicated that axial load can significantly affect and alter the behavior of HS R/C column under inelastic cyclic loadings. Also we found that the relationship between amounts of lateral reinforcement and axial load ratios was $\rho$ =(0.37η+0.15)f`/f.

  • PDF

Shear Strength Prediction of Reinforced Concrete Members Subjected In Axial force using Transformation Angle Truss Model (변환각 트러스 모델에 의한 축력을 받는 철근콘크리트 부재의 전단강도 예측)

  • Kim Sang-Woo;Lee Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.813-822
    • /
    • 2004
  • For the prediction of the shear strength of reinforced concrete members subjected to axial force, this paper presents a truss model, Transformation Angle Truss Model (TATM), that can predict the shear behavior of reinforced concrete members subjected to combined actions of shear, axial force, and bending moment. In TATM, as axial compressive stress increases, crack angle decreases and concrete contribution due to the shear resistance of concrete along the crack direction increases in order to consider the effect of the axial force. To verify if the prediction results of TATM have an accuracy and reliability for the shear strength of reinforced concrete members subjected to axial forces, the shear test results of a total of 67 RC members subjected to axial force reported in the technical literatures were collected and compared with TATM and existing analytical models(MCFT RA-STM and FA-STM). As a result of comparing with experimental and theoretical results, the test results was better predicted by TATM with 0.94 in average value of $\tau_{test}/\tau_{ana}$. and $11.2\%$ in coefficient of variation than other truss models. And theoretical results obtained from TATM were not effect by steel capacity ratio, axial force, shear span-to-depth ratio, and compressive steel ratio.

Axial compressive behavior of high strength concrete-filled circular thin-walled steel tube columns with reinforcements

  • Meng Chen;Yuxin Cao;Ye Yao
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.95-107
    • /
    • 2023
  • In this study, circular thin-walled reinforced high strength concrete-filled steel tube (RHSCFST) stub columns with various tube thicknesses (i.e., 1.8, 2.5 and 3.0mm) and reinforcement ratios (i.e., 0, 1.6%, 2.4% and 3.2%) were fabricated to explore the influence of these factors on the axial compressive behavior of RHSCFST. The obtained test results show that the failure mode of RHSCFST transforms from outward buckling and tearing failure to drum failure with the increasing tube thickness. With the tube thickness and reinforcement ratio increased, the ultimate load-carrying capacity, compressive stiffness and ductility of columns increased, while the lateral strain in the stirrup decreased. Comparisons were also made between test results and the existing codes such as AIJ (2008), BS5400 (2005), ACI (2019) and EC4 (2010). It has been found that the existing codes provide conservative predictions for the ultimate load-carrying capacity of RHSCFST. Therefore, an accurate model for the prediction of the ultimate load-carrying capacity of circular thin-walled RHSCFST considering the steel reinforcement is developed, based on the obtained experimental results. It has been found that the model proposed in this study provides more accurate predictions of the ultimate load-carrying capacity than that from existing design codes.

An Experimental Study on the Concrete Filled Circular Steel Columns with D/t (지름두께비를 고려한 콘크리트충전 원형강관기둥에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.215-218
    • /
    • 1995
  • This paper presents an experimental study on the strength and deformation of concrete-filled circular steel short columns. Six specimens of concrete-filled circular short columns were tested under concentric compressive load. For comparsion, three specimens of circular steel short columns were also loaded to failure. The ultimate strength, ductility, and confinement mechanism of columns were compared. In the comparison, the effect of witch-thickness ratio and concrete compressive strength on the behavior of colimns were examed. As a result, the axial load verse axial average strain relationship of concrete-filled circular steel columns was very stable, because of interactions between the concrete and steel, the strength are 13% and 30% larger than the strength extimated by simply superimposed method of the concrete and steel. The ratio of the circumferential to longitudinal strain increment, both measured on the steel suface, was 0.28 up to the longitudinal strain of 0.1%, increases from 0.3 to 0.8 between the strain of 0.1% to 0.3%, and 0.8 beyond the strain of 0.3%

  • PDF

Nonlinear Stability Analysis of Slender Concrete Columns (세장한 콘크리트 기둥의 비선형 안정 해석)

  • 김진근;양주경;김원근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.80-85
    • /
    • 1992
  • A nonlinear second-order analysis program that properly describes the nonlinear behavior of concrete was developed by using the layering technique. As the slenderness ratio of column is increased, the peaks of P-M curve lie remote from the section interaction diagram for the same eccentricities. But the peaks of P-M curve lie rather close to the section interaction diagram for very large eccentricities. In this study , the effects of compressive strength of concrete, longitudinal steel ratio, and yield strength of steel on second-order moment of concrete columns were analyzed. As the compressive strength of concrete and the yield strength of steel are increased, the ratio of peak axial force to maximum axial strength for concentrically loaded short column( Pu/Po) is decreased. But as the longitudinal steel ratio is increased, the ratio , Pu/Po increases.

  • PDF

Size Effect for Flexural Compression of Concrete Specimens (휨.압축 하중을 받는 콘크리트 부재의 크기효과)

  • 김진근;이성태;양은익;김민욱;이상순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.371-376
    • /
    • 1998
  • In this study, the size effect of concrete members subjected to the axial load and bending moment is investigated using a series of C-shaped specimens of which test procedure is similar to those of Hognestad, Hanson, and McHenry's. Main test variable is a size ratio of the specimens(1:1/2:1/4) at the concrete compressive strength of 500kg/㎠. Test results show that the flexural compression strength at failure decreases as the size of specimen increases, that is, the size effect law is present. Model equation is derived using regression analyses with experimental data and it is compared with formulas for compressive strength of cylinders and shear strength of beams without stirrups. Size effects is distinct th following sequence; shear strength of beams without stirrups, compressive strength of C-shaped specimens, compressive strength of cylinders.

  • PDF

Strength model for square concrete columns confined by external CFRP sheets

  • Benzaid, Riad;Mesbah, Habib Abdelhak
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.111-135
    • /
    • 2013
  • An experimental study has been carried out on square plain concrete (PC) and reinforced concrete (RC) columns strengthened with carbon fiber-reinforced polymer (CFRP) sheets. A total of 78 specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. Slenderness of the columns, number of wrap layers and concrete strength were the test parameters. Compressive stress, axial and hoop strains were recorded to evaluate the stress-strain relationship, ultimate strength and ductility of the specimens. Results clearly demonstrate that composite wrapping can enhance the structural performance of square columns in terms of both maximum strength and ductility. On the basis of the effective lateral confining pressure of composite jacket and the effective FRP strain coefficient, new peak stress equations were proposed to predict the axial strength and corresponding strain of FRP-confined square concrete columns. This model incorporates the effect of the effective circumferential FRP failure strain and the effect of the effective lateral confining pressure. The results show that the predictions of the model agree well with the test data.

A Study on the Prediction of the Strength and Axial Strain of High-Strength Concrete Columns Confined by Tie Reinforcement (띠근 보강 고강도 콘크리트 기둥의 강도 및 축변형 특성 산정에 관한 연구)

  • Park, Hoon-Gyu;Jang, Il-Young
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.197-208
    • /
    • 1999
  • The use of high-strength concrete which permits smaller cross sections, reduced dead loads, and longer spans has been getting more popular in tall buildings. However, there has been little research on behavior of high-strength concrete columns laterally reinforced with square ties and subjected to compressive loading. With the addition of transverse reinforcement which lead to triaxial compressive state, ductility behavior of high-strength column member shall be increased. In this study, rational quality and quantity evaluations were made to investigate the ultimate strength and strain ductility by confinement effect of tie reinforced high-strength concrete columns subject to uniaxial loads. Concrete failure theory at the triaxial compressive state and statistical results based on conventional experimental data were applied for this propose. Up to 185 columns, tested under monotonically increasing concentric loading, were evaluated in terms of strength and strain ductility. Analytical results show that confinement stress, maximum compressive strength, and increase of strain equations were developed with the consideration of concrete strength, yield strength, spacing, volumetric ratio, and configurations of tie reinforcement.

Mechanical Behavior of Steel Fiber Reinforced Polymer-impregnated Concrete (강섬유보강 폴리머침투콘크리트의 기계적 성질에 관한 연구)

  • 변근주;송영철;정해성;정기영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.156-161
    • /
    • 1993
  • This paper is to develop steel fiber reinforced polymer-impregnated concrete(SFPIC) by impregnation polymer impregnate into hardened steel fiber reinforced concrete(SFRC). Steel fiber induces ductile behavior and polymer impregnant increase compressive strength. Steel fiber reinforced polymer-impregnated concrete specimens are prepared with fiber contents of 0.0, 1.5, 2.0, 2.5% and tested to obtain uni-axial and bi-axial compression strengths, tensile strength and flexural strength. The strength and mechanical properties of normal concrete, SFRC, SFPIC are compared.

  • PDF

Axial Strength Evaluation for Tubular T-Joints with Internal Ring Stiffener (환보강재를 가진 T형 관이음부의 축방향 강도 평가)

  • 조현만;류연선;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.269-276
    • /
    • 2001
  • Tubular structures are widely used for offshore platforms and truss type structures. In this paper, nonlinear finite element analysis is used to assess the static strength of stiffened tubular T-joints subjected to compressive brace loading. This joints was modelled with and without internal ring stiffener According to variation of ring geometries, the effect of ring stiffener for T-joints are investigated. Internal ring stiffener is found to be efficient improving ultimate strength of tubular joints. Relations of ring thickness and axial strength are observed considering geometric parameters of ring stiffeners.

  • PDF