• 제목/요약/키워드: axial bearing capacity

검색결과 230건 처리시간 0.02초

실측형상오차를 이용한 3.5인치 HDD 스핀들 볼베어링의 NRRO 해석 (NRRO Analysis of 3.5" HDD Spindle Ball Bearings Utilizing the Measured Geometric Imperfection)

  • 이영근;최상규;윤기찬;이영신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.585-591
    • /
    • 2003
  • It has been widely known that geometrical or form errors of ball bearings such as ball size error, ball waviness, inner and outer race waviness due to inherent manufacturing imperfection are one of the major sources of uncontrollable non-repeatable run-out (NRRO) vibration in HDD spindle motor. NRRO in HDD is also known to be the primary cause of limiting the storage capacity of HDD. In this paper, We performed vibration analysis for NRRO a ball bearing being used in 3.5" HDD spindle motor. To theoretically estimate NRRO considering the geometrical errors of ball bearing components, a simple three degrees of freedom model was proposed and then vibration analysis for axial and radial NRRO was conducted utilizing the measured geometric imperfection of a bearing with both the waviness magnitude and phase taken into account. Effects of bearing preload and clearance on NRRO was also investigated as an effort to predict their optimum values minimizing bearing NRRO.

  • PDF

Reinforcement effect of micropile and bearing characteristics of micropiled raft according to the cohesion of soil and stiffness of pile

  • KangIL Lee;MuYeun Kim;TaeHyun Hwang
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.511-525
    • /
    • 2024
  • Micropiled raft has been used to support the existing and new structures or to provide the seismic reinforcement of foundation systems. Recently, research on micropile or micropiled raft has been actively conducted as the usage of micropile has increased, and the reinforcement effect of pile for the raft, the pile installation methods, and methods for calculating the bearing capacity of micropiled raft have been proposed. In addition, existing research results show that the behavior of this foundation system is different depending on the pile conditions and can be greatly influenced by the characteristics of the upper or lower ground depending on the conditions of pile. In other words, considering that the micropile is a friction pile, it can be predicted that the reinforcing effect of micropile for the raft and the bearing capacity of micropiled raft may depend on the cohesion of upper soil layer depending on the pile conditions. However, existing studies have limitations in that they were conducted without taking this into account. However, existing studies have limitations as they have been conducted without considering these characteristics. Accordingly, this study investigated the reinforcing effect of micropile and the bearing characteristics of micropiled raft by varying the cohesion of upper soil layer and the stiffness of pile which affect the behavior of micropiled raft. In this results, the reinforcing effect of micropile on the raft also increased as the cohesion of soil layer increased, but the reinforcing effect of pile was more effective in ground conditions with decreased the cohesion. In addition, the relationship between the axial stiffness of micropile and the bearing capacity of micropiled raft was found to be a logarithmic linear relationship. It was found that the reinforcing effect of micropile can increase the bearing capacity of raft by 1.33~ 3.72 times depending on the cohesion of soil layer and the rigidity of pile.

Axial strengthening of RC columns by direct fastening of steel plates

  • Shan, Z.W.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.705-720
    • /
    • 2021
  • Reinforced concrete (RC) columns are the primary type of vertical support used in building structures that sustain vertical loads. However, their strength may be insufficient due to fire, earthquake or volatile environments. The load demand may be increased due to new functional usages of the structure. The deformability of concrete columns can be greatly reduced under high axial load conditions. In response, a novel steel encasement that distinguishes from the traditional steel jacketing that is assembled by welding or bolt is developed. This novel strengthening method features easy installation and quick strengthening because direct fastening is used to connect the four steel plates surrounding the column. This new connection method is usually used to quickly and stably connect two steel components by driving high strength fastener into the steel components. The connections together with the steel plates behave like transverse reinforcement, which can provide passive confinement to the concrete. The confined column along with the steel plates resist the axial load. By this way, the axial load capacity and deformability of the column can be enhanced. Eight columns are tested to examine the reliability and effectiveness of the proposed method. The effects of the vertical spacing between adjacent connections, thickness of the steel plate and number of fasteners in each connection are studied to identify the critical parameters which affect the load bearing performance and deformation behavior. Lastly, a theoretical model is proposed for predicting the axial load capacity of the strengthened RC columns.

3 패드 가스 포일 저널 베어링의 프리로드 증가에 따른 성능 해석 (Analysis of Three-Pad Gas Foil Journal Bearing for Increasing Mechanical Preloads)

  • 이종성;김태호
    • Tribology and Lubricants
    • /
    • 제30권1호
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, a three-pad gas foil journal bearing with a diameter of 40 mm and an axial length of 35 mm was modeled to predict the static and dynamic performances with regard to an increasing mechanical preload. The Reynolds equation for an isothermal and isoviscous ideal gas was coupled with a simple elastic foundation foil model to calculate the hydrodynamic pressure solution iteratively. In the prediction results, the journal eccentricity, journal attitude angle, and minimum film thickness decreased, but the friction torque increased with the preload. A quick comparison implied a lower load capacity but higher stability for a three-pad gas foil bearing compared to a one-pad gas foil journal bearing. The direct stiffness coefficients increased with the preload, but the cross-coupled stiffness coefficients decreased. The direct damping coefficient increased in the horizontal direction but decreased in the vertical direction as the preload increased. These model predictions will be useful as a benchmark against experimental test data.

Comparative study on bearing characteristics of pervious concrete piles in silt and clay foundations

  • Cai, Jun;Du, Guangyin;Xia, Han;Sun, Changshen
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.595-604
    • /
    • 2021
  • With the advantages of high permeability and strength, pervious concrete piles can be suitable for ground improvement with high water content and low bearing capacity. By comparing the strength and permeability of pervious concrete with different aggregate sizes (3-5 mm and 4-6 mm) and porosities (20%, 25%, 30% and 35%), the recommended aggregate size (3-5 mm) and porosity (30%) can be achieved. The model tests of the pervious concrete piles in soft soil (silt and clay) foundations were conducted to evaluate the bearing characteristics, results show that, for the higher consolidation efficiency of the silty foundation, the bearing capacity of the silty foundation is 16% higher, and the pile-soil stress ratio is smaller. But when it is the ultimate load for the piles, they will penetrate into the underlying layer, which reduces the pile-soil stress ratios. With higher skin friction of the pile in the silty foundation, the pile penetration is smaller, so the decrease of the pile axial force can be less. For the difference in consolidation efficiency, the skin friction of pile in silt is more affected by the effective stress of soil, while the skin friction of pile in clay is more affected by the lateral stress. When the load reaches 4400 N, the skin friction of the pile in the silty foundation is about 35% higher than that of the clay foundation.

Crack effect on the elastic buckling behavior of axially and eccentrically loaded columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.169-184
    • /
    • 2006
  • A close form solution of the maximum deflection for cracked columns with rectangular cross-sections was developed and thus the elastic buckling behavior and ultimate bearing capacity were studied analytically. First, taking into account the effect of the crack in the potential energy of elastic systems, a trigonometric series solution for the elastic deflection equation of an arbitrary crack position was derived by use of the Rayleigh-Ritz energy method and an analytical expression of the maximum deflection was obtained. By comparison with the rotational spring model (Okamura et al. 1969) and the equivalent stiffness method (Sinha et al. 2002), the advantages of the present solution are that there are few assumed conditions and the effect of axial compression on crack closure was considered. Second, based on the above solutions, the equilibrium paths of the elastic buckling were analytically described for cracked columns subjected to both axial and eccentric compressive load. Finally, as examples, the influence of crack depth, load eccentricity and column slenderness on the elastic buckling behavior was investigated in the case of a rectangular column with a single-edge crack. The relationship of the load capacity of the column with respect to crack depth and eccentricity or slenderness was also illustrated. The analytical and numerical results from the examples show that there are three kinds of collapse mechanisms for the various states of cracking, eccentricity and slenderness. These are the bifurcation for axial compression, the limit point instability for the condition of the deeper crack and lighter eccentricity and the fracture for higher eccentricity. As a result, the conception of critical transition eccentricity $(e/h)_c$, from limit-point buckling to fracture failure, was proposed and the critical values of $(e/h)_c$ were numerically determined for various eccentricities, crack depths and slenderness.

Seismic behavior of circular-in-square concrete-filled high-strength double skin steel tubular stub columns with out-of-code B/t ratios

  • Jian-Tao Wang;Yue Wei;Juan Wang;Yu-Wei Li;Qing Sun
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.441-456
    • /
    • 2023
  • Aiming at the development trend of light weight and high strength of engineering structures, this paper experimentally investigated the seismic performance of circular-in-square high-strength concrete-filled double skin steel tubular (HCFDST) stub columns with out-of-code width-to-thickness (B/t) ratios. Typical failure mode of HCFDST stub columns appeared with the infill material crushing, steel fracture and local buckling of outer tubes as well as the inner buckling of inner tubes. Subsequently, the detailed analysis on hysteretic curves, skeleton curves and ductility, energy dissipation, stiffness degradation and lateral force reduction was conducted to reflect the influences of hollow ratios, axial compression ratios and infill types, e.g., increasing hollow ratio from 0.54 to 0.68 and 0.82 made a slight effect on bearing capacity compared to the ductility coefficients; the higher axial compression ratio (e.g., 0.3 versus 0.1) significantly reduced the average bearing capacity and ductility; the HCFDST column SCFST-6 filled with concrete obviously displayed the larger initial secant stiffness with a percentage 34.20% than the column SCFST-2 using engineered cementitious composite (ECC); increasing hollow ratios, axial compression ratios could accelerate the drop speed of stiffness degradation. The out-of-code HCFDST stub columns with reasonable design could behave favorable hysteretic performance. A theoretical model considering the tensile strength effect of ECC was thereafter established and verified to predict the moment-resisting capacity of HCFDST columns using ECC. The reported research on circular-in-square HCFDST stub columns can provide significant references to the structural application and design.

이중범프 공기포일베어링의 성능시험 (Performance Test of Double-Bumped Air Foil Bearings)

  • 김영철;이동현;김경웅
    • Tribology and Lubricants
    • /
    • 제25권2호
    • /
    • pp.108-113
    • /
    • 2009
  • This paper presents a experimental results for the performance evaluation of a double-bumped air foil bearing. The test results of a double-bumped AFB is compared with a single-bumped AFB at a heavily-loaded condition. The diameter of the test bearing is 50 mm, and the axial length is 50 mm. Nominal clearance of the single-bumped AFB is evaluated as $105{\mu}m$, and that of the double-bumped AFB is as $95{\mu}m$. The test of the AFBs are demonstrated at 3 test mode; the load variation mode, the speed variation mode, and start-stop mode. The single-bumped AFB demonstrated a upward load-carrying capacity of 95 N and a downward load-carrying capacity of 130 N at 20,000 rpm. The double-bumped AFB demonstrated a upward load-carrying capacity of 170 N and a downward load-carrying capacity of 170 N at 20,000 rpm. The single-bumped AFB demonstrated a downward lift-off speed of 16,300 rpm at 105 N. The double-bumped AFB demonstrated a downward lift-off speed of 15,400 rpm at 105 N. The start-stop test of the AFBs assure 5,000 cycle endurance life. The test results are compared with the theoretical calculation results. The test and theorectical results show thata double-bump air foil bearing provides a higher load-carrying capacity, stiffness and damping than a single-bump air foil bearing in a heavily-loaded condition.

Hydraulic Force and Impeller Evaluation of a Centrifugal Heart Pump

  • Timms, D.L;Tan, A.C.C;Pearcy, M-J;Mcneil, K;Galbraith, A
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.376-381
    • /
    • 2004
  • A rig was constructed to test the performance characteristics and compare the hydraulic forces exerted on a centrifugal type artificial heart impeller. A conventional shaft. seal and bearing system. while driven by a small electric motor. supported the impeller which was separated from the pump casing by a six degree of freedom force transducer (JR3 Ine). Radial (x. y) and axial (z) hydraulic forces were recorded and compared. At physiological operating conditions. the results indicate that the double entry/exit centrifugal pump encounters a smaller radial force and significantly reduced axial thrust. These experimental results are valuable in the design of a magnetic bearing system to suspend the impeller of a centrifugal artificial heart pump. This experimental technique may also be applied to evaluate the required capacity and predict the lifetime of contact bearings in marine pumps.

성능검증을 위한 마이크로파일 현장 시험시공 및 재하시험 (Verification Studies for Field Peformance of Micropiling)

  • 구정민;이기환;조영준;최창호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.368-375
    • /
    • 2009
  • This paper describes field installation and load test results performed for three types of micropiles in the process of developing a new micropiling method. Field tests were performed for two conventional types(i.e., micropile reinforced with steel bar and gravity grouting, micropile reinforced with steel bar and steel casing and gravity grouting) and a proposed type(i.e., micropile reinforced with hollow steel pipe wrapped with geotextile-pack and pressurized grouting). The load test results subjected to axial compression and tension and lateral loading conditions are described in this paper. The micropiles were exposed in the air in order to verify the installation quality and curing condition of grouting material via ground excavation. Axial compression and tension test results indicate that the new micropile type provide at least 40% higher bearing capacity than that of conventional types. Based on the examination of exposed piles, it is induced that the proposed method, packed micropile, provides better interlocking between grouts and surrounding soils and increases higher frictional resistance comparing to conventional types.

  • PDF