• Title/Summary/Keyword: avicel

Search Result 135, Processing Time 0.022 seconds

Isolation and Enzyme Production of a Mannanase-producing Strain, Bacillus sp. WL-3. (Mannanase를 생산하는 Bacillus sp. WL-3 균주의 분리와 효소 생산성)

  • 오영필;이정민;조기행;윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.247-252
    • /
    • 2002
  • A bacterium producing the extracellular mannanase was isolated from Korean formented food and has been identified as a member of the genus Bacillus from the result of the phylogenic analysis based on partial 165 rRNA sequences. The isolate, named Bacillus sp. WL-3, was shown to be similar to B. subtilis strain on the basis of its biochemical properties. The mannanase of culture supematant was the most active at $55^{\circ}C$ and pH 6.0. The additional carbohydrates including u-cellulose, avicel, oat spelt xylan, guar gum and locust bean gum (LBG) increased the mannanase productivity. Especially, the maximum mannanase productivity was reached 65.5 U/ml in LB medium supplemented with 0.5% (w/v) LBG, which was 131-folds more than that in LB medium. It was sug-gested that the increase of mannanase production was owing to induction of mannanase biosynthesis by LBG hydrolysates transported following initial hydrolysis by extracellular mannanase during the cell growth. The molec-ular weight of WL-3 mannanase was estimated to approximately 38.0 kDa by zymogram on SDS-PAGE.

Effect of Multiple Copies of Cohesins on Cellulase and Hemicellulase Activities of Clostridium cellulovorans Mini-cellulosomes

  • Cha, Jae-Ho;Matsuoka, Satoshi;Chan, Helen;Yukawa, Hideaki;Inui, Masayuki;Doi, Roy H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1782-1788
    • /
    • 2007
  • Cellulosomes in Clostridium cellulovorans are assembled by the interaction between the repeated cohesin domains of a scaffolding protein (CbpA) and the dockerin domain of enzyme components. In this study, we determined the synergistic effects on cellulosic and hemicellulosic substrates by three different recombinant mini-cellulosomes containing either endoglucanase EngB or endoxylanase XynA bound to mini-CbpA with one cohesin domain (mini-CbpAl), two cohesins (mini-CbpA12), or four cohesins (mini-CbpAl234). The assembly of EngB or XynA with mini-CbpA increased the activity against carboxymethyl cellulose, acid-swollen cellulose, Avicel, xylan, and com fiber 1.1-1.8-fold compared with that for the corresponding enzyme alone. A most distinct improvement was shown with com fiber, a natural substrate containing xylan, arabinan, and cellulose. However, there was little difference in activity between the three different mini-cellulosomes when the cellulosomal enzyme concentration was held constant regardless of the copy number of cohesins in the cellulosome. A synergistic effect was observed when the enzyme concentration was increased to be proportional to the number of cohesins in the mini-cellulosome. The highest degree of synergy was observed with mini-CbpAl234 (1.8-fold) and then mini-CbpAl2 (1.3-fold), and the lowest synergy was observed with mini-CbpAl (1.2-fold) when Avicel was used as the substrate. As the copy number of cohesin was increased, there was more synergy. These results indicate that the clustering effect (physical enzyme proximity) of the enzyme within the mini-cellulosome is one of the important factors for efficient degradation of plant cell walls.

Control of Catabolite Repression by Limit Feed of Cellobiose in Cellulomomas sp. (Cellulomonas sp.에 있어서 셀로비오스의 미량공급에 의한 생성물 저해의 조절)

  • Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.2
    • /
    • pp.235-243
    • /
    • 1976
  • As an investigation on the catabolite repression system in cellulase production by Cellulomons sp. CS1-1, the organism was tested on the avicel overlay plates containing glucose or cellobiose at a range of concentration and was grown in continuous culture vessel, supplied by cellobiose medium, aiming the enhanced production of extracellular CM-cellulase at low dilution rates. Product inhibition of cellulase action by cellobiose was also tested. The results obtained are: i) no inhibition of CM-cellulase was observed up to 10 mM(3.4mg/ml) cellobiose in the reaction mixture, however 30% inhibition was observed at 20mM and 55% at 50mM, ii) the tests of catabolite repression on the solid media were successful, and avicel degradation was markedly repressed by glucose or cellobiose, iii) at low concentrations of cellobiose, dilution rate 0.05 and $1.0hour^{-1}$, no significant increase was observed in the production of either intra or extracellular CM-cellulase.

  • PDF

Usage of Enzyme Substrate to Protect the Activities of Cellulase, Protease and α-Amylase in Simulations of Monogastric Animal and Avian Sequential Total Tract Digestion

  • Wang, H.T.;Hsu, J.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1164-1173
    • /
    • 2006
  • Cellulase from Aspergillus niger, (${\alpha}$-amylase from Bacillus sp. and protease from Bacillus globigii were used as enzyme sources in this study to examine how their respective substrates protect them in two kinds of simulated gastrointestinal tract digesting processes. Avian total digest tract simulation test showed that filter paper, Avicel and cellulose resulted in 7.7, 6.4 and 7.4 times more activity than of unprotected cellulose, respectively. Protease with addition of casein, gelatin or soybean protein showed no significant protection response. Starch protected amylase to be 2.5 times activity of the unprotected one. Monogastric animal total tract digestion simulation test showed that filter paper, Avicel and cellulose resulted in 5.9, 9.0 and 8.8 times activity of unprotected cellulase, respectively. Casein, gelatin and soybean protein resulted in 1.2, 1.3 and 2.0 times activity of unprotected protease, respectively. Starch did not protect amylase activity in monogastric animal total tract simulation. Protection of mixed enzymes by substrates in two animal total tract simulation tests showed that filter paper in combination with soybean protein resulted in 1.5 times activity of unprotected cellulose, but all substrates tested showed no significant protection effect to protease. Soybean protein and starch added at the same time protected the amylase activity to be two times of the unprotected one. Test of non-purified substrate protection in two animal total digest tract simulation showed that cellulase activity increased as BSA (bovine serum albumin) concentration increased, with the highest activity to be 1.3 times of unprotected enzyme. However, BSA showed no significant protection effect to protease. Amylase activity increased to 1.5 times as BSA added more than 1.5% (w/v). Cellulase activity increased to 1.5 times as soybean hull was added higher than 1.5%. Amylase had a significant protection response only when soybean hull added up to 2%. Protease activity was not protected by soybean hull to any significant extent.

Studies on the Preparation of Digestive Enzyme Tablets(III) (소화효소정제(消化酵素錠劑)의 제조(製造)에 관(關)한 연구(硏究) (제3보)(第3報))

  • Kim, Yong-Bae;Yi, Pyong-Kuk;Min, Shin-Hong;Shin, Hyun-Jong
    • Journal of Pharmaceutical Investigation
    • /
    • v.6 no.2
    • /
    • pp.69-82
    • /
    • 1976
  • Tablet product design problem was structured as constrained optimization problem and subsequently solved by multiple regression analysis and Lagrangian method of optimization. We used Lagrangian method for the purpose of finding the reason of the previous results. Biodiastase and cellulase were the enzymes, chosen, $Avicel{\circledR}$ and corn starch or calcium carboxy methyl cellulose were the binder and disintegrant, respectively. The effect of the dry binder and disintegrant concentration on tablet hardness, friability, volume, disintegration time was recorded. Optimization of this parameter was studied by using the constrained optimization method. In addition to finding a optimal condition of the enzyme tablets, the application of sensitivity analysis studies to such problems was also illustrated. In order to get a stable preparations of the enzyme tablets, accelerated test of coating tablets was carried out in this study. the results are as follows. 1) The minimum disintegration time, such that the average tablet volume did not exceed 0.0154 cubic inch and the average friability value did not exceed 0.62%, was 6.6 minutes and then $Avicel{\circledR}$ and corn starch were 15.4% and 17.2%, respectively. 2) The multiple-correlation coefficients for the regression models of tablet hardness, friability, disintegration time and volume were with in the 95% confidence range. 3) According to the test results, calcium carboxymethyl cellulose can be used as a disintegrant instead of corn starch.

  • PDF

The Effect of Disintegrants on the Properties of Salicylamide Tablets (수종의 붕해제가 살리실아미드정제의 제제특성에 미치는 영향)

  • Hwang, Sung-Joo;Rhee, Gye-Ju;Jee, Ung-Kil;Kwak, Hyo-Sung;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 1992
  • Six common tablet disintegrants (corn starch, Avicel PH102, calcium carboxymethylcellulose, Primojel, Kollidon CL and Ac-Di-Sol) were used at the concentration of 0, 2, 4 and 6% (w/w) in salicylamide tablets made with wet granulation method. Certain physical parameters of the disintegrants (moisture sorption, hydration capacity and bulk density) were determined to evaluate their relative efficiency. The disintegration time and dissolution rate of the tablets were correlated well with the ranks of initial rate of moisture sorption for each disintegrant as follows; Ac-Di-Sol, Kollidon CL, primojel, calcium CMC, corn starch and Avicel PH102. The initial rate of moisture sorption was important for the disintegration capacity as well as hydration capacity. The effect of storage at different temperatures and relative humidity upon the tablets containing various disintegrants was evaluated in terms of tablet hardness and disintegration time. Storage at high temperature reduced the hardness substantially and retarded the disintegration of the all tablets studied. Especially, the hardness of tablets containing Kollidon CL was significantly reduced. Although the tablet hardness was decreased and the disintegration time was increased under a moderate humid condition, both of them were decreased under the severely high humid condition of 80 or 90% RH, which was due to the breakrupture of tablet matrix bonds by the excessive uptake of moisture. Therefore, the stability caused by moisture sorption should be considered, when disintegrants having high moisture sorption such as Kollidon CL, Ac-Di-Sol and Primojel were employed in the tablets containing water-labile or hygroscopic drugs.

  • PDF

Pharmaceutical Formulation and Evaluation of Sustained - Release Hydrophilic Matrix Tablet of Cefatrizine Propyleneglycol Using Polyethylene Oxide (폴리에틸렌옥사이드를 이용한 세파트리진프로필렌글리콜 서방성매트릭스 정제의 제조 및 평가)

  • Lee, Eon-Hyoung;Park, Sun-Young;Jee, Ung-Kil;Kim, Dong-Chool
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.37-41
    • /
    • 2001
  • Various characteristics of polyethylene oxide (PEO) are useful for drug delivery systems. In this study, PEO was used as a sustained release matrix system containing cefatrizine propyleneglycol (Cefa-PG) which is a new semi-synthetic broad-spectrum and orally active cephalosporin. Five kinds of sustained release matrix tablets were formulated with various content of PEO and other ingredients. And three types of matrix tablets were formulated of which compositions were the same but the hardness was different. It was found that PEO content influenced drug release rate. Increasing PEO content, the drug release rate from matrix tablets was decreased. In addition, Avicel, one of the ingredients of matrix components, changed the drug release from the sustained release PEO matrix tablets. With increasing Avicel content, the rate of drug release was increased. For the effect of hardness of matrix tablets, the rate of drug release is decreased with increasing hardness. In comparison of bioavailability parameters after oral administration of Cefa-PG PEO matrix tablets and general Cefa-PG capsule in beagle dog, the sustained release PEO matrix tablets is more useful than a general dosage form. $AUC^{0-12}$ of the sustained release PEO matrix tablet and the general dosage form was 1.16 and 0.644 respectively.

  • PDF

Characterization of Physicochemical Properties of Ferulic Acid

  • Sohn, Young-Taek;Oh, Jin-Hee
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1002-1008
    • /
    • 2003
  • Ferulic acid (3-methoxy, 4-hydroxy cinnamic acid) is a flavoid component possessing antioxidant property. The compound is currently under development as a new drug candidate for the treatment of the dementia. The objective of this preformulation study was to determine the physicochemical properties of ferulic acid. The n-octanol to water partition coefficients of ferulic acid were 0.375 and 0.489 at the pHs of 3 and 10, respectively. Accelerated stability study for ferulic acid indicated that the t 90 value for the drug was estimated to be 459 days at $25^{\circ}C$. Ferulic acid was also found to be unstable under the relative humidity of more than 76%, probably because of the hygroscopic nature of the drug. In order to study compatibility of ferulic acid with typical excipients, potential change in differential scanning calorimetry spectrum was studied in 1: 1 binary mixtures of ferulic acid and typical pharmaceutical excipients (e.g., Aerosil, Avicel, CMC, Eudragit, lactose, PEG, PVP, starch and talc). Avicel, CMC, PVP and starch were found to be incompatible with ferulic acid, indicating the addition of these excipients may complicate the manufacturing of the formulation for the drug. Particle size distribution of ferulic acid powder was in the size range of 10-190 $\mu$m with the mean particle size of 61 $\mu$m. The flowability of ferulic acid was apparently inadequate, indicating the granulation may be necessary for the processing of the drug to solid dosage forms. Two polymorphic forms were obtained by recrystallization from various solvents used in formulation. New polymorphic form of ferulic acid, Form II, was obtained by recrystallization from 1,4-dioxane. The equilibrium solubility for Form I was approximately twice of that for Form II. The dissolution rate of Form II was higher than that of Form I in the early phase (<6 min). Therefore, these physicochemical information has to be taken in the consideration for the formulation of ferulic acid.

Screening of Microorganisms Secreted High Efficient Enzymes and Properties of Enzymatic Deinking for Old Newsprint(III) -Production of bacterial cellulase and xylanase for enzymatic deinking of old newsprint- (고효율 효소를 분비하는 균주의 선발 및 신문고지의 효소탈묵 특성(제3보) -고지탈묵용 Bacterial Cellulase와 Xylanase의 생산-)

  • Park Seong-Cheol;Kang Jin-Ha;Lee Yang-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.1 s.109
    • /
    • pp.25-37
    • /
    • 2005
  • This study was carried out to examine the optimal cultural condition in enzyme activities of CMCase, FPase and xylanase in selected strains which secret extracellular enzymes for using deinking agent to old newsprint. The results of this study were as follow: The production of enzyme by Bacillus pumilus I was maximal as grown on the medium, containing of rice bran+xylan $2.0\%$, peptone $0.8\%,\;K_2HPO_4\;0.1\%\;and\;CaCl_2\;0.06\%$ at pH 8.0 and $28^{\circ}C$ for 72 hours. Optimal cultural condition of B. subtilis I was avicel+xylan $3.5\%,\;urea\;0.4\%,\;K_3PO_4\;0.1\%\;and\;CaCl_2\;0.015\%$ at pH 9.0 and $28^{\circ}C$ for 36 hours. The maximal enzyme production was observed in the medium, containing of avicel+xylan $3.5\%,\;urea\;1.6\%\;and\; K_2HPO_4\;0.125\%$ with pH 9.0 when B. pumilus II was cultured at $28^{\circ}C$ for 60 hours. The production of enzyme by B. subtilis IT was maximal as grown on the medium, containing of xylan $2.0\%,\;yeast\; extract\;0.6\%,\;K_2HPO_4\;0.1\%\;and\;ZnSO_4\;0.04\%$ at pH 8.0 and $34^{\circ}C$ for 36 hours. The activities of FPase and xylanase in tested 4 strains were not much different with Thermomonospora fusca.

Purification and Characterization of Xylanase I from Trichoderma koningii ATCC 26113 (Trichoderma koningii ATCC 26113으로부터 Xylanase 1의 순수분리 및 특성)

  • Kim, Hyun-Ju;Kang, Sa-Ouk;Hah, Yung-Chil
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.63-71
    • /
    • 1993
  • A xylanase (xylanase I) was purified 11.9-fold from the culture filtrate of Trichoderma koningii ATCC 26113 by the column chromatography on Sephadex G-75, SP-Sephadex C-50, DEAE-Sephadex A-50 and Sephadex G-50 with an overall yield of 8.2%. The molecular mass determined by gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis was found to be a monomeric polypeptide of ca. 35 kDa. The isoelectric point of the enzyme was estimated to be 9.3. The optimal reaction pH and temperature are 5.8 and 55.deg.C, respectively. The enzyme is stable up to 60.deg.C, while 78% of its activity is lost after the incubation for 10 min at 70.deg.C. The enzyme hydrolyzes sylan with relatively high activity, as well as carboxymethyl cellulose and avicel. The $K_{m}$ values of the enzyme for oat-spelf sylan, larchwood xylan and Avicel were 3.5, 1.6 and 10. 1 mg/ml, respectively. The enzyme hydrolyzed oat-spelt sylan to sylose, sylobiose, sylotriose and arabionoxylobiose, while it degraded larchwood xylan to xylose, xylobiose, xylotriose and arabionoxylobiose, while it degraded larchwood xylan to xylose, xylobiose and xylotriose as the major products. The hydrolysis patterns indicate that xylanase I is endo-enzyme.e.

  • PDF