• Title/Summary/Keyword: averaging

Search Result 1,380, Processing Time 0.027 seconds

Measurements of Secondary Vortices in the Cylinder Wake by Three-Dimensional Phase-Averaging Technique Using Cinematic PIV Data (Cinematic PIV 데이터의 3차원 위상평균 기법을 이용한 실린더 후류의 2차 와류 측정)

  • Seong, Jae-Yong;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1540-1548
    • /
    • 2000
  • Near-wake flow field downstream of a circular cylinder in the wake-transition regime where fine-scale secondary vortices have a spanwise wavelength of around one diameter has been studied by means of phase-averaging from cinematic PIV data. A cross-correlation algorithm in conjunction with the FFT(Fast Fourier Transform)analysis and an offset correlation technique is used for obtaining the velocity vectors. Which the help of very high sampling rate compared to the shedding frequency, it is possible to obtain phase-averaged flow fields although the shedding is not forced but natural. Phase -locked three-dimensional vortical structures are reconstructed form the phase-averaged data in one x-y(cross-sectional) and several z-x(spanwise-streamwise)planes. In this process of phase-averaging in a z-x plane, a technique to freeze the secondary vortices relative to the centerline is applied. The formation process of the secondary vortices is shown by considering spatial relations between the primary Karman and the secondary vortices and their temporal evolutions.

Effect of Spatial Distribution of Material Properties on its Experimental Estimation (재질의 공간적 변동이 재료강도시험결과에 미치는 영향)

  • Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.40-45
    • /
    • 2000
  • Some engineering materials are often known to have considerable spatial variation in their resisting strength and other properties. The objective of this study is to investigate the averaging effect and the applicability of extremal statistic for the statistical size effect. In the present study, it is assumed that the material property is a stationary random process in space. The theoretical autocorrelation function of the material strength are discussed for several correlation lengths. And, in order to investigate the statistical size effect, the material properties was simulated by using the non-Gaussian random process method. The material properties were plotted on the Weibull probability papers. The main results are summarized as follows: The autocorrelation function of the material properties are almost independent of the averaging length. The variance decreases with increasing the averaging length. As correlation length is smaller, the slope is larger. And also, it was found that Weibull statistics based on the weakest-link model could not explain the spatial variation of material properties with respect to the size effect satisfactory.

  • PDF

A Smoothing Method for Digital Curve by Iterative Averaging with Controllable Error (오차 제어가 가능한 반복적 평균에 의한 디지털 곡선의 스무딩 방법)

  • Lyu, Sung-Pil
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.769-780
    • /
    • 2015
  • Smoothing a digital curve by averaging its connected points is widely employed to minimize sharp changes of the curve that are generally introduced by noise. An appropriate degree of smoothing is critical since the area or features of the original shape can be distorted at a higher degree while the noise is insufficiently removed at a lower degree. In this paper, we provide a mathematical relationship between the parameters, such as the number of iterations, average distance between neighboring points, weighting factors for averaging and the moving distance of the point on the curve after smoothing. Based on these findings, we propose to control the smoothed curve such that its deviation is bounded particular error level as well as to significantly expedite smoothing for a pixel-based digital curve.

On the Detection of Induction-Motor Rotor Fault by the Combined “Time Synchronous Averaging-Discrete Wavelet Transform” Approach

  • Ngote, Nabil;Ouassaid, Mohammed;Guedira, Said;Cherkaoui, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2315-2325
    • /
    • 2015
  • Induction motors are widely used in industrial processes since they offer a very high degree of reliability. But like any other machine, they are vulnerable to faults, which if left unmonitored, might lead to an unexpected interruption at the industrial plant. Therefore, the condition monitoring of the induction motors have been a challenging topic for many electrical machine researchers. Indeed, the effectiveness of the fault diagnosis and prognosis techniques depends very much on the quality of the fault features selection. However, in induction-motor drives, rotor defects are the most complex in terms of detection since they interact with the supply frequency within a restricted band around this frequency, especially in the no-loaded case. To overcome this drawback, this paper deals with an efficient and new method to diagnose the induction-motor rotor fault based on the digital implementation of the monitoring algorithm based on the association of the Time Synchronous Averaging technique and Discrete Wavelet Transform. Experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the combined “Time Synchronous Averaging – Discrete Wavelet Transform” approach.

Interference Localization for Cellular OFDMA Systems (셀룰러 OFDMA 시스템을 위한 간섭의 집중화)

  • Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.51-60
    • /
    • 2007
  • Cellular OFDMA systems may suffer from various amounts of inter-cell interferences according to subcarriers. If it is possible to estimate the interference level of each subcarrier, the performance can be improved by adjusting the magnitude of channel decoder input signals inversely proportional to the interference amounts. While conventional cellular systems prefer to use interference averaging techniques for mitigating inter-cell interferences, this paper shows that localizing inter-cell interferences to the reduced number of subcarriers can significantly improve the system performance assuming thatinterference estimation can be employed. If interference estimation is not used, it is more favorable to use interference averaging techniques to avoid excessive interference levels to certain subcarriers. On the other hand, if interference estimation can be employed, interference localization is more beneficial than interference averaging.

Location of pressure sensing holes in MPA flowmeter and discharge coefficients (MPA 유량계 압력감지공의 위치와 유출계수)

  • Kim, Raymond K.;Choi, Sung Kil
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.160-165
    • /
    • 2004
  • MPA (Multi-Point Averaging) flow element is a new type of differential pressure (DP) flow-sensing device that was developed by Seojin Instech to improve the operating characteristics of the conventional Averaging Pilot Tube (APT) flow elements. Operating characteristics of a flowmeter in general can be defined in terms of measurement accuracy and range. Improvement of accuracy and expanding the range of flow measurement were the two main objectives of the development. To achieve these dual objectives several upstream and downstream pressure-sensing holes were placed in MPA flow element. During the course of the development it was found that certain arrangements of the pressure-sensing holes improved measurement accuracy but did not expand operating flow range of Averaging Pilot Tubes. Development tests were performed with water between Reynolds number of 50,000 and 1,000,000 in the four-inch test line at the Alden Research Laboratory, U.S.A. Purpose of this paper is to present the relationship between the various locations of the pressure-sensing holes and the performance characteristics of MPA flow element. Furthermore, the operating characteristics of the best performing MPA are compared with those of typical orifice and APT.

  • PDF

Stochastic optimal control of coupled structures

  • Ying, Z.G.;Ni, Y.Q.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.669-683
    • /
    • 2003
  • The stochastic optimal nonlinear control of coupled adjacent building structures is studied based on the stochastic dynamical programming principle and the stochastic averaging method. The coupled structures with control devices under random seismic excitation are first condensed to form a reduced-order structural model for the control analysis. The stochastic averaging method is applied to the reduced model to yield stochastic differential equations for structural modal energies as controlled diffusion processes. Then a dynamical programming equation for the energy processes is established based on the stochastic dynamical programming principle, and solved to determine the optimal nonlinear control law. The seismic response mitigation of the coupled structures is achieved through the structural energy control and the dimension of the optimal control problem is reduced. The seismic excitation spectrum is taken into account according to the stochastic dynamical programming principle. Finally, the nonlinear controlled structural response is predicted by using the stochastic averaging method and compared with the uncontrolled structural response to evaluate the control efficacy. Numerical results are given to demonstrate the response mitigation capabilities of the proposed stochastic optimal control method for coupled adjacent building structures.

The Treatment of the Free-surface Boundary Conditions by Finite-Difference Midpoint-Averaging Scheme for Elastic Wave Equation Modeling (탄성파 파동 방정식 모델링에서 중간점 차분 기법을 이용한 지표 경계 조건의 처리)

  • Park, Kwon-Gyu;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.61-69
    • /
    • 2000
  • The free-surface boundary conditions are persistent problem in elastic wave equation modeling by finite-difference method, which can be summarized with the degradation of the accuracy of the solution and limited stability range in Poisson's ratio. In this paper, we propose the mid-point averaging scheme as an alternative way of implementing the free-surface boundary conditions, and present the solution to Lamb's problem to verify our approach.

  • PDF