• Title/Summary/Keyword: averaged model

Search Result 1,232, Processing Time 0.029 seconds

Application of Depth-averaged 2-D Numerical Model for the Evaluation of Hydraulic Effects in River with the Riparian Forest (하안림 영향 검토를 위한 수심평균 2차원 수치모형 적용)

  • Kim, Ji Sung;Kim, Won;Kim, Hyea Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.165-173
    • /
    • 2011
  • In this study, FESWMS FST2DH model was used to analyze the change of flow characteristics after making the riparian forest. The additional flow resistance is calculated based on the drag-force concept acting on each tree and the lateral momentum transfer between planted and non-planted zone could be satisfactorily reproduced by parabolic turbulence model in this depth-averaged 2-D numerical model. For model validation, the simulated velocities were compared with the measured data, showing good agreement in both tree density cases of experiments. The previous method using a proper Manning's n coefficient gives reasonable solutions only to evaluate the conveyance, but the calculated approach velocity at each tree was different from realistic value. The proposed procedure could be widely used to evaluate hydraulic effects of riparian trees in practical engineering.

Numerical Study on the Effects of Combination of Blade Number for Shaft Forces and Moments of Contra-Rotating Propeller (상반회전 프로펠러의 날개수 조합에 따른 축기진력 연구)

  • Paik, Kwang-Jun;Lee, Jinsuk;Lee, Taegu;Hoshino, Tetsuji;Park, Hyung-Gil;Seo, Jongsoo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.282-290
    • /
    • 2013
  • The effects of the combination of blade number for forward and after propeller on the propeller shaft forces of a contra-rotating propeller (CRP) system are presented in the paper. The research is performed through the numerical simulations based on the Reynolds-Averaged Navier-Stokes equations (RANS). The simulation results of the present method in open water condition are validated comparing with the experimental data as well as the other numerical simulation results based on the potential method for 4-0-4 CRP (3686+3687A) and 4-0-5 CRP (3686+3849) of DTNSRDC. Two sets of CRP are designed and simulated to study the effect of the combination of blade number in behind-hull condition. One set consists of 3-blade and 4-blade, while the other is 4-blade and 4-blade. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. From the simulation results, the fluctuations of axial force and moment are dominant in the case of same blade numbers for forward and after propellers, whereas the fluctuations of horizontal and vertical forces and moments are very large in the case of different blade numbers.

Numerical Analysis of the Wake of a Surface Ship Model Mounted in KRISO Large Cavitation Tunnel (KRISO 대형 캐비테이션터널 시험조건의 함정 모형선 반류에 대한 수치해석적 연구)

  • Park, Il-Ryong;Kim, Je-In;Kim, Ki-Sup;Ahn, Jong-Woo;Park, Young-Ha;Kim, Myoung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.494-502
    • /
    • 2016
  • The accurate assessment of hull-appendage interaction in the early design stage is important to control the inflow to the propeller plane, which can cause undesirable hydrodynamic effects in terms of cavitation phenomenon. This paper describes a numerical analysis for the flow around a fully appended surface ship model for which KRISO has carried out a model test in the Large Cavitation Tunnel(LCT). This numerical study was performed with the LCT model test in a complementary manner for a good reproduction of the wake distribution of surface ships. A second order accurate finite volume method provided by a commercial computational fluid dynamics(CFD) program was used to solve the governing Reynolds Averaged Navier-Stokes(RANS) equations, where the SST $k-{\omega}$ model was used for turbulence closure. The numerical results were compared to available LCT experimental data for validation. The calculations gave good predictions for the boundary layer profiles on the walls of the empty cavitation tunnel and the wake at the propeller plane of the fully appended hull model in the LCT.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.

ROTATING FLOW ANALYSIS AROUND A HAWT ROTOR BLADE USING RANS EQUATIONS (RANS 방정식을 이용한 HAWT 로터 블레이드의 회전 유동장 해석)

  • Kim, T.S.;Lee, C.;Son, C.H.;Joh, C.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • The Reynolds-Averaged Navier-Stokes(RANS) analysis of the 3-D steady flow around the NREL Phase VI horizontal axis wind turbine(HAWT) rotor was performed. The CFD analysis results were compared with experimental data at several different wind speeds. The present CFD model shows good agreements with the experiments both at low wind speed which formed well-attache flow mostly on the upper surface of the blade, and at high wind speed which blade surface flow completely separated. However, some discrepancy occurs at the relatively high wind speeds where mixed attached and separated flow formed on the suction surface of the blade. It seems that the discrepancy is related to the onset of stall phenomena and consequently separation prediction capability of the current turbulence model. It is also found that strong span-wise flow occurs in stalled area due to the centrifugal force generated by rotation of the turbine rotor and it prevents abrupt reduction of normal force for higher wind speed than the designed value.

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis and Response Surface Method (삼차원 Navier-Stokes 해석과 반응면기법을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1457-1463
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a multi-blade centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k - c turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

Effects of Double Volute on Performance of A Centrifugal Pump (원심펌프의 성능에 대한 더블 볼류트의 영향)

  • Shim, Hyeon-Seok;Heo, Man-Woong;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • In this study, a parametric study of a centrifugal pump with double volute has been performed numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport model was selected as turbulence closure through turbulence model test. The finite volume method and unstructured grid system were used for the numerical analysis. The optimal grid system in the computational domain was determined through a grid dependency test. The expansion coefficient, circumferential and radial starting positions and length of divider were selected as the geometric parameters to be tested. And, the hydraulic efficiency and the radial thrust coefficient were considered as performance parameters. It was found that the radial thrust and hydrualic efficiency are more sensitive to the expansion angle and circumferential starting position of the divider than the other geometrical parameters.

Morphological Properties and Target Strength Characteristics for dark banded rockfish (Sebastes inermis) (볼락의 형태학적 특징과 음향반사강도 특성)

  • Hwang, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.120-127
    • /
    • 2015
  • Morphological properties of dark banded rockfish (Sebastes inermis) were analysed to investigate its acoustic scattering characteristics. Total of 18 live samples was prepared for X-ray photos and collected morphological coordinates of their body and swim bladder shapes. Kirchhoff-ray mode model was used to calculate acoustic scattering pattern for broad-band frequency range. Inclination of swim bladder ranged from 17 to 30 and the averaged value was about $25.2^{\circ}$ (S.D.(standard deviation)=3.15). There were no any tendency of increase or decrease in volume and area ratio of swim bladder to fish body and ranged from 2.2 % to 4.43 % and 14.85 % to 21.31 %, respectively. The averaged value of volume and area ratio was 3.13 % (S.D.=0.52) and 17.6 % (S.D.=1.5). $b_{20}$ values were -69.01 for 38 kHz, -69.83 for 70 kHz, -70.17 for 120 kHz and -70.93 for 200 kHz, recpectively. Broadband acoustic patterns of dark banded rockfish for 20 ~ 200 kHz were similar among samples and they reflected size and morphological properties of fish species.

Numerical Simulation of Particle Deposition on a Wafer Surface (웨이퍼 표면상의 입자침착에 관한 수치 시뮬레이션)

  • 명현국;박은성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2315-2328
    • /
    • 1993
  • The turbulence effect of particle deposition on a horizontal free-standing wafer in a vertical flow has been studied numerically by using the low-Reynolds-number k-.epsilon. turbulence model. For both the upper and lower surfaces of the wafer, predictions are made of the averaged particle deposition velocity and its radial distribution. Thus, it is now possible to obtain local information about the particle deposition on a free-standing wafer. The present result indicates that the particle deposition velocity on the lower surface of wafer is comparable to that on the upper one in the diffusion controlled deposition region in which the particle sizes are smaller than $0.1{\mu}m$. And it is found in this region that, compared to the laminar flow case, the averaged deposition velocity under the turbulent flow is about two times higher, and also that the local deposition velocity at the center of wafer is high equivalent to that the wafer edge.