• Title/Summary/Keyword: average rainfall index

Search Result 57, Processing Time 0.026 seconds

Characteristics and Assessment of Metal Pollution and their Potential Source in Stormwater Runoff from Shihwa Industrial Complex, Korea (시화산업단지 강우유출수 내 중금속 오염도 평가 및 오염원 추적 연구)

  • Lee, Jihyun;Jeong, Hyeryeong;Choi, Jin-Young;Ra, Kongtae
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.91-101
    • /
    • 2020
  • Stormwater runoff is known as a major non-point water pollution source that transports heavy metals, which have accumulated in road surface, to stream and coastal area. Dissolved and particulate metals in stormwater runoffs have been investigated to understand the outflow characteristics of heavy metals during rainfall events and to identify their pollution sources. The concentration of dissolved Co and Ni decreased after the outflow with high concentrations at the beginning of the rainfall, and other metals showed different characteristics depending on the rainfall and rate of discharge. Particulate metals showed a similar trend with the temporal variation of suspended solids concentration in stormwater runoffs. The results of geo-accumulation index (Igeo) indicated that the stormwater runoffs from industrial region were very highly polluted with Cu, Zn and Cd. As a result of comparing the metal concentrations of <125 ㎛ for road dust near the study area, Cu, Zn and Cd were originated from inside of metal manufacturing facilities rather than traffic activities at road surface and these metals accumulated on the surface area of facilities were transported to the water environments during stormwater event. The average discharged amounts of heavy metals for one rainfall event were Cr 128 g, Co 12.35 g, Ni 98.5 g, Cu 607.5 g, Zn 8,429.5 g, As 6.95 g, Cd 3.7 g, Pb 251.75 g, indicating that metal runoff loads in the stormwater runoffs are closely related to surrounding industry types.

Developing Extreme Drought Scenarios for Seoul based on the Long Term Precipitation Including Paleoclimatic Data (고기후 자료를 포함한 장기연속 강수자료에 의한 서울지역의 극한가뭄 시나리오 개발)

  • Jang, Ho-Won;Cho, Hyeong-Won;Kim, Tae-Woong;Lee, Joo-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.659-668
    • /
    • 2017
  • In this study, long-term rainfall data of more than 300 years including the paleoclimatic rainfall data from Chuk Woo Kee (1777-1907), the modern observed rainfall data (1908-2015), and the climate change scenario (2016-2099), which were provided by KMA (Korea Meteorological Agency), was used to analyze the statistical characteristics of the extreme drought in the Seoul., Annual average rainfall showed an increasing trend over a entire period, and Wavelet transform analysis of SPI (Standardized Precipitation Index) which is meteorological drought index, showed 64 to 80 months (5-6 Year) of drought periods for Chuk Woo Kee and KMA data, 96 to 128 months (8 to 10 years) of drought period for climate change data. The dry spell analysis showed that the drought occurrence frequency in the ancient period was high, but frequency was gradually decreased in the modern and future periods. In addition, through the analysis of the drought magnitude, 1901 was the extreme drought year in Seoul, and 1899-1907 was the worst consecutive 9 years long term drought in Seoul.

Characteristics of inorganic nutrient absorption of potato (Solanum tuberosum L.) plants grown under drought condition

  • Bak, Gyeryeong;Lee, Gyejun;Kim, Taeyoung;Lee, Yonggyu;Kim, Juil;Ji, Samnyeo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.181-181
    • /
    • 2017
  • Global warming and climate change have been one of the most important problems last 2 decades. Global warming is known to cause abnormal climate and influence ecology, food production and human health. According to climate change model global warming is causing expansion of drought and increase of evaporation. Therefore, securing water in agriculture has been an important issue for crop cultivation. As potato is susceptible to drought, water shortage generally results in decrease of yield and decrease of biomass. In this research, we investigated characteristics of inorganic nutrient absorption and growth of plants grown under drought condition. Plants were sampled in sites of Cheong-ju and Gangneung, where the severity of drought stress were different. During the growth period in Gangneung, total rainfall in 2016 decreased by 50% compared with those in last 5 years average. Especially, there was almost no rain in tuber enlargement period (from mid-May to mid-June). On the other hand, the total rainfall in of Cheong-ju was is similar to those in last 5 years average. Inorganic components including K, Ca and Mg and plant growth factors such as plant length, stem length, leaf area index and plant biomass were investigated. Tuber yields in both areas were investigated at harvest. Growth period of plants was is longer in Cheong-ju than that in Gangneung. Contents of all inorganic components were higher in plants grown in Cheong-ju than in Gangneung. The results were attributed to higher production of plant biomass in Cheong-ju. Considering the results, severe drought stress conditions in Gangneung accelerated plant aging and resulted in low plant growth. Although total yield was greatly reduced under drought stress the rate of commercial yield was is not significantly different with non-drought conditions.

  • PDF

Discussion for the Effectiveness of Radar Data through Distributed Storm Runoff Modeling (분포형 홍수유출 모델링을 통한 레이더 강우자료의 효과분석)

  • Ahn, So Ra;Jang, Cheol Hee;Kim, Sang Ho;Han, Myoung Sun;Kim, Jin Hoon;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.19-30
    • /
    • 2013
  • This study is to evaluate the use of dual-polarization radar data for storm runoff modeling in Namgang dam (2,293 $km^2$) watershed using KIMSTORM (Grid-based KIneMatic wave STOrm Runoff Model). The Bisl dual-polarization radar data for 3 typhoons (Khanun, Bolaven, Sanba) and 1 heavy rain event in 2012 were obtained from Han River Flood Control Office. Even the radar data were overall less than the ground data in areal average, the spatio-temporal pattern between the two data was good showing the coefficient of determination ($R^2$) and bias with 0.97 and 0.84 respectively. For the case of heavy rain, the radar data caught the rain passing through the ground stations. The KIMSTORM was set to $500{\times}500$ m resolution and a total of 21,372 cells (156 rows${\times}$137 columns) for the watershed. Using 28 ground rainfall data, the model was calibrated using discharge data at 5 stations with $R^2$, Nash and Sutcliffe Model Efficiency (ME) and Volume Conservation Index (VCI) with 0.85, 0.78 and 1.09 respectively. The calibration results by radar rainfall showed $R^2$, ME and VCI were 0.85, 0.79, and 1.04 respectively. The VCI by radar data was enhanced by 5 %.

Runoff Characteristics of Non-point Source Pollutants from Different Forest Types During Rainfall Events (활엽수림, 침엽수림 및 혼효림 지역의 강우시 비점오염물질 유출특성)

  • Shin, Minhwan;Shin, Dongsuk;Lee, Jaewoon;Choi, Jaewan;Won, Chulhee;Seo, Jiyeon;Choi, Yonghun;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.507-517
    • /
    • 2010
  • Long-term monitoring was conducted to identify the runoff characteristics of non-point source according to the three forest types (deciduous forest, coniferous forest and mixed forest) in this study. Rainfall events of each deciduous forest, coniferous forest, and mixed forest were 10, 8, 12, respectively. Average runoff depth and coefficients of each forest type were founded to be coniferous forest and were followed by others in turns : deciduous forest, and mixed forest because various conditions (i.e., rainfall property, Antecedent Precipitation Index (API), soil property, slope, and forest management) could change runoff characteristics. In the analysis of the first flush phenomenon, it showed that SS and T-P were sensitive for the first flush phenomenon. The first flush phenomenon of them were showed differently by rainfall intensity, rainfall duration, and amount of rainfall. The research results indicated that range of the Event Mean Concentration (EMC) values in deciduous forest were 0.8~2.4 mg/L for $BOD_5$, 2.0~13.4 mg/L for $COD_{Mn}$, 1.3~2.9 mg/L for DOC, 1.150~3.913 mg/L for T-N, 0.010~0.350 mg/L for T-P and 3.1~291.8 mg/L for SS and in coniferous forest were 0.8~2.2 mg/L for $BOD_5$, 1.9~3.6 mg/L for $COD_{Mn}$, 1.0~2.0 mg/L for DOC, 1.025~2.957 mg/L for T-N, 0.002~0.084 mg/L for T-P and 0.8~5.4 mg/L for SS. Also, range of the EMC values in mixed forest were 1.3~2.3 mg/L for $BOD_5$, 2.4~4.8 mg/L for $COD_{Mn}$, 1.1~2.1 mg/L for DOC, 0.385~2.703 mg/L for T-N, 0.016~0.080 mg/L for T-P and 2.3~30.0 mg/L for SS.

Estimation of Drought Index Using CART Algorithm and Satellite Data (CART기법과 위성자료를 이용한 향상된 공간가뭄지수 산정)

  • Kim, Gwang-Seob;Park, Han-Gyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.128-141
    • /
    • 2010
  • Drought indices such as SPI(Standard Precipitation Index) and PDSI(Palmer Drought Severity Index) estimated using ground observations are not enough to describe detail spatial distribution of drought condition. In this study, the drought index with improved spatial resolution was estimated by using the CART algorithm and ancillary data such as MODIS NDVI, MODIS LST, land cover, rainfall, average air temperature, SPI, and PDSI data. Estimated drought index using the proposed approach for the year 2008 demonstrates better spatial information than that of traditional approaches. Results show that the availability of satellite imageries and various associated data allows us to get improved spatial drought information using a data mining technique and ancillary data and get better understanding of drought condition and prediction.

Development of Roughness-Model for Jointed Plain Concrete Pavements in Express Highway (고속도로 줄눈 콘크리트 포장의 평탄성 모델 개발)

  • Park, Young-Hoon;Chon, Beom-Jun;Kim, Young-Kyu;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2010
  • Roughness is the most important factor to maintain the road performance, and affects greatly on the design life in Jointed Plain Concrete pavements. Also, the factors the evaluate pavement‘s commonality is the three method such as functionality, safety and structural performance. In evaluating function of road, representative factors is the roughness, which has been used to determine maintenance time as key standard. As research for roughness is absence in pavement design. Applied roughness-model had a low-reliability in Korea. Therefore, it is needed to develop reliable model in road roughness. In this research, uniform specific is applied to distribute them after selecting the concrete pavements. Concrete pavement is divided by sections of 238. Total length of this sections has 281km and account for 16% of total road length in korean concrete pavements for selected sections. Considering the korean roughness-model, the evaluation of roughness is performed for the freezing index, average annual rainfall, condition for the base, the amount of traffic as well as spalling(%), cracking(%), age(year) at the selected section at the selected section. Also, additional sections is selected to evaluate various age which affects on the roughness. As a result of the analysis, it showed that spalling(%), cracking(%), age(year), and the condition of the base affected road roughness. When the correlation with the road roughness was analyzed, the reliable model for road roughness was proposed, and the ratio that can explain road roughness was R2-68.8% and P value-0 which is statistically meaningful.

An improved method of NDVI correction through pattern-response low-peak detection on time series (시계열 패턴 반응형 Low-peak 탐지 기법을 통한 NDVI 보정방법 개선)

  • Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.505-510
    • /
    • 2014
  • Normalized Difference Vegetation Index (NDVI) is a major indicator for monitoring climate change and detecting vegetation coverage. In order to retrieve NDVI, it is preprocessed using cloud masking and atmospheric correction. However, the preprocessed NDVI still has abnormally low values known as noise which appears in the long-term time series due to rainfall, snow and incomplete cloud masking. An existing method of using polynomial regression has some problems such as overestimation and noise detectability. Thereby, this study suggests a simple method using amoving average approach for correcting NDVI noises using SPOT/VEGETATION S10 Product. The results of the moving average method were compared with those of the polynomial regression. The results showed that the moving average method is better than the former approach in correcting NDVI noise.

Operation and Application Guidance for the Ground Based Dual-band Radiometer (지상 기반 듀얼 밴드 라디오미터의 운영 및 활용 가이던스)

  • Jeon, Eun-Hee;Kim, Yeon-Hee;Kim, Ki-Hoon;Lee, Hee-Sang
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.441-458
    • /
    • 2008
  • A TP/WVP-3000A, ground-based microwave radiometer, that was first introduced to South Korea has been operated since August 22, 2007 at the National Center for Intensive Observation of Severe Weathers (NCIO). Using the dual-band, the radiometer provides temperature and humidity soundings from the surface up to 10 km height with the high-temporal resolution of a few minutes. In this study, the performance of the radiometer on the predictability of the high impact weathers was evaluated and various practical applications were investigated. To verify the retrieved profile data from the radiometer, temperature and relative humidity soundings are compared with those from the rawinsonde launched at the NCIO and Gwangju station. The root mean squared errors for temperature and relative humidity soundings were smaller under rainy weather conditions. The correlation coefficient between PWVs (Precipitable Water Vapors) obtained from the radiometer and Global Positioning System satellite at Mokpo station is 0.92 on average. In order to investigate the structure and characteristics of precipitation, stability indexes related to rainfall such as the Convective Available Potential Energy (CAPE), K-index, and Storm RElative Helicity (SREH) were calculated using windprofiler at the NCIO from 14 to 16 September, 2007. CAPE and K-index tended to be large when the thermodynamic unstability was strong. On the other hand, SREH index was dominantly large when the dynamic unstability was strong due to the passage of the typhoon 'Nari'.

Analysis of Drought Return and Duration Characteristics at Seoul (서울지점 가뭄의 재현 및 지속특성 분석)

  • Yoo, Chul-Sang;Ryoo, So-Ra
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.561-573
    • /
    • 2003
  • This study has analyzed the drought return and duration characteristics using the monthly rainfall at Seoul, and compared them with those obtained by applying the Poisson process. The Standardized Precipitation Index (SPI) was used as the drought index along with the 10 month moving average for the rainfall smoothing. The thresholds applied for the analysis of drought were -1.00, -1.50, and -2.00. The drought return and duration characteristics derived from the analysis of observed data show that: (1) The moderate drought occurs every 2 years and lasts about 4 - 5 months. (2) The severe drought occurs every 3 - 5 years and lasts about 2 - 4 months. (3) The extreme drought occurs every 8 - 23 years and lasts about 1 - 4 months. Especially, the severe droughts (thresholds of -1.5 and -2.0) before the long dry period were found to have longer return periods but shorter durations than those after the long dry period. This seems to be because of the high variability of precipitation as well as the fact that no snowfall has been added for the winter precipitation before the long dry period. Finally, the comparison of results derived from the analysis of observed data and those derived by applying the Poisson process shows that the Poisson process well explain the return and duration characteristics of drought.