• Title/Summary/Keyword: average of ARL

Search Result 74, Processing Time 0.025 seconds

Multivariate EWMA Control Charts for Monitoring Dispersion Matrix

  • Chang Duk-Joon;Lee Jae Man
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.265-273
    • /
    • 2005
  • In this paper, we proposed multivariate EWMA control charts for both combine-accumulate and accumulate-combine approaches to monitor dispersion matrix of multiple quality variables. Numerical performance of the proposed charts are evaluated in terms of average run length(ARL). The performances show that small smoothing constants with accumulate-combine approach is preferred for detecting small shifts of the production process.

Multivariate CUSUM Charts with Correlated Observations

  • Cho, Gyo-Young;Ahn, Young-Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.127-133
    • /
    • 2001
  • In this article we establish multivariate cumulative sum (CUSUM) control charts based on residual vector with correlated observations. We first find the residual vector and its expectation and variance-covariance matrix and then evaluate the average run length (ARL) of the control charts.

  • PDF

Adjustment of Control Limits for Geometric Charts

  • Kim, Byung Jun;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.519-530
    • /
    • 2015
  • The geometric chart has proven more effective than Shewhart p or np charts to monitor the proportion nonconforming in high-quality processes. Implementing a geometric chart commonly requires the assumption that the in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice in high-quality process where the proportion of nonconforming items is very small. Thus, the error in the parameter estimation increases and may lead to deterioration in the performance of the control chart if a sample size is inadequate. We suggest adjusting the control limits in order to improve the performance when a sample size is insufficient to estimate the parameter. We propose a linear function for the adjustment constant, which is a function of the sample size, the number of nonconforming items in a sample, and the false alarm rate. We also compare the performance of the geometric charts without and with adjustment using the expected value of the average run length (ARL) and the standard deviation of the ARL (SDARL).

A Selectively Cumulative Sum(S-CUSUM) Control Chart (선택적 누적합(S-CUSUM) 관리도)

  • Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.3
    • /
    • pp.126-134
    • /
    • 2005
  • This paper proposes a selectively cumulative sum(S-CUSUM) control chart for detecting shifts in the process mean. The basic idea of the S-CUSUM chart is to accumulate previous samples selectively in order to increase the sensitivity. The S-CUSUM chart employs a threshold limit to determine whether to accumulate previous samples or not. Consecutive samples with control statistics out of the threshold limit are to be accumulated to calculate a standardized control statistic. If the control statistic falls within the threshold limit, only the next sample is to be used. During the whole sampling process, the S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L -consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain approach is employed to describe the S-CUSUM sampling process. Formulae for the steady state probabilities and the Average Run Length(ARL) during an in-control state are derived in closed forms. Some properties useful for designing statistical parameters are also derived and a statistical design procedure for the S-CUSUM chart is proposed. Comparative studies show that the proposed S-CUSUM chart is uniformly superior to the CUSUM chart or the Exponentially Weighted Moving Average(EWMA) chart with respect to the ARL performance.

A Comparison of the performance of mean, median, and precedence control charts for nonnormal data

  • Kim, Jung-Hee;Lee, Sung-Im;Park, Heon-Jin;Lee, Jae-Cheol;Jang, Young-Chul
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.197-201
    • /
    • 2005
  • In this article, we will compare the performance of the mean control chart, the median control chart, the transformed mean control chart, the transformed median control chart, and the precedence control chart by simulation study. For control charts with transformed data, Yeo-Johnson transformation is used. Under the in-control condition, ARL's in all control charts coincide with the designed ARL in the normal distribution, but in the other distributions, only the precedence control chart provides the in-control ARL as designed. Under the out-of-control condition, the mean control chart is preferred in the normal distribution and the median control chart is preferred in the heavy-tailed distribution and the precedence control chart outperforms in the short-tailed distribution.

  • PDF

Economic Analysis for Detection of Out-of-Control of Process Using 2 of 2 Runs Rules (2중 2 런규칙을 사용한 공정이상 감지방법의 경제성 분석)

  • Kim, Young Bok;Hong, Jung Sik;Lie, Chang Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.3
    • /
    • pp.308-317
    • /
    • 2008
  • This research investigates economic characteristics of 2 of 2 runs rules under the Shewhart $\bar{X}$ control chart scheme. A Markov chain approach is employed in order to calculate the in-control average run length (ARL) and the average length of analysis cycle. States of the process are defined according to the process conditions at sampling time and transition probabilities are derived from the state definitions. A steady state cost function is constructed based on the Lorezen and Vance(1986) model. Numerical examples show that 2 of 2 runs rules are economically superior to the Shewhart $\bar{X}$ chart in many cases.

A Control Chart for Gamma Distribution using Multiple Dependent State Sampling

  • Aslam, Muhammad;Arif, Osama-H.;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.109-117
    • /
    • 2017
  • In this article, a control chart based on multiple dependent (or deferred) state sampling for the gamma distributed quality characteristic is proposed using the gamma to normal transformation. The proposed control chart has two pairs of control limits, which can be determined by considering the in-control average run length (ARL). The shift in the scale parameter of a gamma distribution is considered and the out-of-control ARL is evaluated. The performance of the proposed chart has been shown for different levels of the parameters of the proposed control chart. It is also shown that the proposed chart is better than the Shewhart chart in terms of ARLs. A case study with a real data has been included for the practical usage of the proposed scheme.

INFLUENCE OF SPECIAL CAUSES ON STOCHASTIC PROCESS ADJUSTMENT

  • Lee, Jae-June;Mihye Ahn
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.219-231
    • /
    • 2004
  • Process adjustment is a complimentary tool to process monitoring in process control. Although original intention of process adjustment is not identifying a special cause, detection and elimination of special causes may lead to significant process improvement. In this paper, we examine the impact of special causes on process adjustment. The bias in the adjusted output process is derived for each type of special causes, and average run length (ARL) of the Shewhart chart applied to the adjusted output is computed for each special cause types. Numerical results are illustrated for the ARL of the Shewhart chart, thereupon seriousness of special causes on process adjustment is evaluated for each type of special causes.

Comparison of Multivariate CUSUM Charts Based on Identification Accuracy for Spatio-temporal Surveillance (시공간 탐지 정확성을 고려한 다변량 누적합 관리도의 비교)

  • Lee, Mi Lim
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.521-532
    • /
    • 2015
  • Purpose: The purpose of this study is to compare two multivariate cumulative sum (MCUSUM) charts designed for spatio-temporal surveillance in terms of not only temporal detection performance but also spatial detection performance. Method: Experiments under various configurations are designed and performed to test two CUSUM charts, namely SMCUSUM and RMCUSUM. In addition to average run length(ARL), two measures of spatial identification accuracy are reported and compared. Results: The RMCUSUM chart provides higher level of spatial identification accuracy while two charts show comparable performance in terms of ARL. Conclusion: The RMCUSUM chart has more flexibility, robustness, and spatial identification accuracy when compared to those of the SMCUSUM chart. We recommend to use the RMCUSUM chart if control limit calibration is not an urgent task.

Statistical Efficiency of VSSI $\bar{X}$ Control Charts for the Process with Two Assignable Causes (두 개의 이상원인이 존재하는 공정에 대한 VSSI $\bar{X}$ 관리도의 통계적 효율성)

  • Lee Ho-Jung;Lim Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.156-168
    • /
    • 2004
  • This research investigates the statistical efficiency of variable sampling size & sampling interval(VSSI) $\bar{X}$ charts under two assignable causes. Algorithms for calculating the average run length(ARL) and average time to signal(ATS) of the VSSI $\bar{X}$ chart are proposed by employing Markov chain method. States of the process are defined according to the process characteristics after the occurrence of an assignable cause. Transition probabilities are carefully derived from the state definition. Statistical properties of the proposed chart are also investigated. A simple procedure for designing the proposed chart is presented based on the properties. Extensive sensitivity analyses show that the VSSI $\bar{X}$ chart is superior to the VSS or VSI $\bar{X}$ chart as well as to the Shewhart $\bar{X}$ chart in statistical sense, even tinder two assignable causes.