Improvement of turbid water prediction accuracy using sensor-based monitoring data in Imha Dam reservoir (센서 기반 모니터링 자료를 활용한 임하댐 저수지 탁수 예측 정확도 개선)
-
- Journal of Korea Water Resources Association
- /
- v.55 no.11
- /
- pp.931-939
- /
- 2022
In Korea, about two-thirds of the precipitation is concentrated in the summer season, so the problem of turbidity in the summer flood season varies from year to year. Concentrated rainfall due to abnormal rainfall and extreme weather is on the rise. The inflow of turbidity caused a sudden increase in turbidity in the water, causing a problem of turbidity in the dam reservoir. In particular, in Korea, where rivers and dam reservoirs are used for most of the annual average water consumption, if turbidity problems are prolonged, social and environmental problems such as agriculture, industry, and aquatic ecosystems in downstream areas will occur. In order to cope with such turbidity prediction, research on turbidity modeling is being actively conducted. Flow rate, water temperature, and SS data are required to model turbid water. To this end, the national measurement network measures turbidity by measuring SS in rivers and dam reservoirs, but there is a limitation in that the data resolution is low due to insufficient facilities. However, there is an unmeasured period depending on each dam and weather conditions. As a sensor for measuring turbidity, there are Optical Backscatter Sensor (OBS) and YSI, and a sensor for measuring SS uses equipment such as Laser In-Situ Scattering and Transmissometry (LISST). However, in the case of such a high-tech sensor, there is a limit due to the stability of the equipment. Therefore, there is an unmeasured period through analysis based on the acquired flow rate, water temperature, SS, and turbidity data, so it is necessary to develop a relational expression to calculate the SS used for the input data. In this study, the AEM3D model used in the Water Resources Corporation SURIAN system was used to improve the accuracy of prediction of turbidity through the turbidity-SS relationship developed based on the measurement data near the dam outlet.
FIDIC White Book is a Model Services Agreement between the Client and the Consultant. This study aimed to derive the Key Risk Sub-Clauses out of 63 Sub-Clauses of General Conditions of the FIDIC White Book by using the Delphi technique. A panel of 40 experts with more than 10 years of experience and expertise in overseas construction services agreements and FIDIC White Book was formed, and the reliability was improved in the direction of increasing the consensus of experts through a total of three Delphi survey processes. In the first Delphi survey, a closed-type survey was conducted on the impact of risk among 63 Sub-Clauses of General Conditions on a Likert 5-point scale, and 26 main risk Sub-Clauses were derived. The Content Validity of the results of the first Delphi survey was verified with the CVR value. In the 2nd and 3rd Delphi surveys, a closed-type survey was conducted on a Likert 10-point scale for 26 main risk Sub-Clauses and the risk possibility and impact of each main risk Sub-Clause were evaluated. The reliability of the 3rd Delphi survey result was verified with the COV value. Total 14 Key Risk Sub-Clauses were derived by applying the average risk possibility and impact of each of the 26 main risk Sub-Clauses to the PI Risk Matrix. The results of deriving Key Risk Sub-Clauses showed that agreement on specific scope of service, delay management, and change management were the most important. As a result of this study, from a practical point of view, consultants of consulting companies provide guidelines that should be reviewed to minimize contractual risks when signing service contracts with clients. From an academic point of view, the direction of research on deriving key risks related to service contracts for consultants participating in overseas construction is presented.
Awareness of the ecological value and importance of protected areas has increased as climate change accelerates, and there is a need for research on ecosystem services provided by nature. The natural park, which is a representative protected area in Korea, has a system of national parks, provincial parks, and county parks. National parks are managed systematically by the Korea National Park Service, but local governments manage provincial parks and county parks. There may be the same hierarchical differences in naturalness (habitat quality) depending on the hierarchy of the natural parks, but it has not been verified. To identify differences, we examined 22 mountain-type natural parks using habitat quality using the INVEST model developed by Stanford University. The analysis of the habitat quality, regardless of the type and area of the natural park, showed that it was higher in the order of Taebaeksan National Park (0.89), Juwangsan National Park (0.87), Woongseokbong County Park (0.86), and Gayasan National Park (0.85). The larger the area, the higher the value of habitat quality. A comparison of natural parks with similar areas showed that the habitat quality of national parks was higher than that of provincial parks and parks. On the other hand, the average habitat quality of county parks was 0.83±0.02, which was 0.05 higher than that of provincial parks at 0.78±0.03. Furthermore, the higher the proportion of forest areas within the natural park, the higher the habitat quality. The results confirmed that the naturalness of natural parks was independent of their hierarchy and that there are differences in naturalness depending on land use, land coverage, and park management.
Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.
The supply chain management (SCM) systems have emerged as strong managerial tools for manufacturing firms in enhancing competitive strength. Despite of large investments in the SCM systems, many companies are not fully realizing the promised benefits from the systems. A review of literature on adoption, implementation and success factor of IOS (inter-organization systems), EDI (electronic data interchange) systems, shows that this issue has been examined from multiple theoretic perspectives. And many researchers have attempted to identify the factors which influence the success of system implementation. However, the existing studies have two drawbacks in revealing the determinants of systems implementation success. First, previous researches raise questions as to the appropriateness of research subjects selected. Most SCM systems are operating in the form of private industrial networks, where the participants of the systems consist of two distinct groups: focus companies and vendors. The focus companies are the primary actors in developing and operating the systems, while vendors are passive participants which are connected to the system in order to supply raw materials and parts to the focus companies. Under the circumstance, there are three ways in selecting the research subjects; focus companies only, vendors only, or two parties grouped together. It is hard to find researches that use the focus companies exclusively as the subjects probably due to the insufficient sample size for statistic analysis. Most researches have been conducted using the data collected from both groups. We argue that the SCM success factors cannot be correctly indentified in this case. The focus companies and the vendors are in different positions in many areas regarding the system implementation: firm size, managerial resources, bargaining power, organizational maturity, and etc. There are no obvious reasons to believe that the success factors of the two groups are identical. Grouping the two groups also raises questions on measuring the system success. The benefits from utilizing the systems may not be commonly distributed to the two groups. One group's benefits might be realized at the expenses of the other group considering the situation where vendors participating in SCM systems are under continuous pressures from the focus companies with respect to prices, quality, and delivery time. Therefore, by combining the system outcomes of both groups we cannot measure the system benefits obtained by each group correctly. Second, the measures of system success adopted in the previous researches have shortcoming in measuring the SCM success. User satisfaction, system utilization, and user attitudes toward the systems are most commonly used success measures in the existing studies. These measures have been developed as proxy variables in the studies of decision support systems (DSS) where the contribution of the systems to the organization performance is very difficult to measure. Unlike the DSS, the SCM systems have more specific goals, such as cost saving, inventory reduction, quality improvement, rapid time, and higher customer service. We maintain that more specific measures can be developed instead of proxy variables in order to measure the system benefits correctly. The purpose of this study is to find the determinants of SCM systems success in the perspective of vendor companies. In developing the research model, we have focused on selecting the success factors appropriate for the vendors through reviewing past researches and on developing more accurate success measures. The variables can be classified into following: technological, organizational, and environmental factors on the basis of TOE (Technology-Organization-Environment) framework. The model consists of three independent variables (competition intensity, top management support, and information system maturity), one mediating variable (collaboration), one moderating variable (government support), and a dependent variable (system success). The systems success measures have been developed to reflect the operational benefits of the SCM systems; improvement in planning and analysis capabilities, faster throughput, cost reduction, task integration, and improved product and customer service. The model has been validated using the survey data collected from 122 vendors participating in the SCM systems in Korea. To test for mediation, one should estimate the hierarchical regression analysis on the collaboration. And moderating effect analysis should estimate the moderated multiple regression, examines the effect of the government support. The result shows that information system maturity and top management support are the most important determinants of SCM system success. Supply chain technologies that standardize data formats and enhance information sharing may be adopted by supply chain leader organization because of the influence of focal company in the private industrial networks in order to streamline transactions and improve inter-organization communication. Specially, the need to develop and sustain an information system maturity will provide the focus and purpose to successfully overcome information system obstacles and resistance to innovation diffusion within the supply chain network organization. The support of top management will help focus efforts toward the realization of inter-organizational benefits and lend credibility to functional managers responsible for its implementation. The active involvement, vision, and direction of high level executives provide the impetus needed to sustain the implementation of SCM. The quality of collaboration relationships also is positively related to outcome variable. Collaboration variable is found to have a mediation effect between on influencing factors and implementation success. Higher levels of inter-organizational collaboration behaviors such as shared planning and flexibility in coordinating activities were found to be strongly linked to the vendors trust in the supply chain network. Government support moderates the effect of the IS maturity, competitive intensity, top management support on collaboration and implementation success of SCM. In general, the vendor companies face substantially greater risks in SCM implementation than the larger companies do because of severe constraints on financial and human resources and limited education on SCM systems. Besides resources, Vendors generally lack computer experience and do not have sufficient internal SCM expertise. For these reasons, government supports may establish requirements for firms doing business with the government or provide incentives to adopt, implementation SCM or practices. Government support provides significant improvements in implementation success of SCM when IS maturity, competitive intensity, top management support and collaboration are low. The environmental characteristic of competition intensity has no direct effect on vendor perspective of SCM system success. But, vendors facing above average competition intensity will have a greater need for changing technology. This suggests that companies trying to implement SCM systems should set up compatible supply chain networks and a high-quality collaboration relationship for implementation and performance.
The exchange between buyers and sellers in the industrial market is changing from short-term to long-term relationships. Long-term relationships are governed mainly by formal contracts or informal agreements, but many scholars are now asserting that controlling relationship by using formal contracts under environmental dynamism is inappropriate. In this case, partners will depend on each other's flexibility or interdependence. The former, flexibility, provides a general frame of reference, order, and standards against which to guide and assess appropriate behavior in dynamic and ambiguous situations, thus motivating the value-oriented performance goals shared between partners. It is based on social sacrifices, which can potentially minimize any opportunistic behaviors. The later, interdependence, means that each firm possesses a high level of dependence in an dynamic channel relationship. When interdependence is high in magnitude and symmetric, each firm enjoys a high level of power and the bonds between the firms should be reasonably strong. Strong shared power is likely to promote commitment because of the common interests, attention, and support found in such channel relationships. This study deals with environmental dynamism in high-tech industry. Firms in the high-tech industry regard it as a key success factor to successfully cope with environmental changes. However, due to the lack of studies dealing with environmental dynamism and supply chain commitment in the high-tech industry, it is very difficult to find effective strategies to cope with them. This paper presents the results of an empirical study on the relationship between environmental dynamism and supply chain commitment in the high-tech industry. We examined the effects of consumer, competitor, and technological dynamism on supply chain commitment. Additionally, we examined the moderating effects of flexibility and dependence of supply chains. This study was confined to the type of high-tech industry which has the characteristics of rapid technology change and short product lifecycle. Flexibility among the firms of this industry, having the characteristic of hard and fast growth, is more important here than among any other industry. Thus, a variety of environmental dynamism can affect a supply chain relationship. The industries targeted industries were electronic parts, metal product, computer, electric machine, automobile, and medical precision manufacturing industries. Data was collected as follows. During the survey, the researchers managed to obtain the list of parts suppliers of 2 companies, N and L, with an international competitiveness in the mobile phone manufacturing industry; and of the suppliers in a business relationship with S company, a semiconductor manufacturing company. They were asked to respond to the survey via telephone and e-mail. During the two month period of February-April 2006, we were able to collect data from 44 companies. The respondents were restricted to direct dealing authorities and subcontractor company (the supplier) staff with at least three months of dealing experience with a manufacture (an industrial material buyer). The measurement validation procedures included scale reliability; discriminant and convergent validity were used to validate measures. Also, the reliability measurements traditionally employed, such as the Cronbach's alpha, were used. All the reliabilities were greater than.70. A series of exploratory factor analyses was conducted. We conducted confirmatory factor analyses to assess the validity of our measurements. A series of chi-square difference tests were conducted so that the discriminant validity could be ensured. For each pair, we estimated two models-an unconstrained model and a constrained model-and compared the two model fits. All these tests supported discriminant validity. Also, all items loaded significantly on their respective constructs, providing support for convergent validity. We then examined composite reliability and average variance extracted (AVE). The composite reliability of each construct was greater than.70. The AVE of each construct was greater than.50. According to the multiple regression analysis, customer dynamism had a negative effect and competitor dynamism had a positive effect on a supplier's commitment. In addition, flexibility and dependence had significant moderating effects on customer and competitor dynamism. On the other hand, all hypotheses about technological dynamism had no significant effects on commitment. In other words, technological dynamism had no direct effect on supplier's commitment and was not moderated by the flexibility and dependence of the supply chain. This study makes its contribution in the point of view that this is a rare study on environmental dynamism and supply chain commitment in the field of high-tech industry. Especially, this study verified the effects of three sectors of environmental dynamism on supplier's commitment. Also, it empirically tested how the effects were moderated by flexibility and dependence. The results showed that flexibility and interdependence had a role to strengthen supplier's commitment under environmental dynamism in high-tech industry. Thus relationship managers in high-tech industry should make supply chain relationship flexible and interdependent. The limitations of the study are as follows; First, about the research setting, the study was conducted with high-tech industry, in which the direction of the change in the power balance of supply chain dyads is usually determined by manufacturers. So we have a difficulty with generalization. We need to control the power structure between partners in a future study. Secondly, about flexibility, we treated it throughout the paper as positive, but it can also be negative, i.e. violating an agreement or moving, but in the wrong direction, etc. Therefore we need to investigate the multi-dimensionality of flexibility in future research.
Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.
For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.
Researches about the relationship between SST(Self Service Technology) and TRI(Technology Readiness Index) have been carried out after TRI was developed by Parasuraman and his colleagues(2000). We hypothesize Consumer Readiness can also influence consumer's motivation, attitude, and intent to use SST. Currently, there has been no research on this subject. In this study, we investigated the relationship between TR, Consumer Readiness and SST Core Attitudinal Model which Dabholkar & Bagozzi(1994) proposed. The researchers also investigated moderating effects of consumer traits and situational factors to verify the acceptance of such forms of service delivery by all kinds of consumers and under different situational contexts. Self consciousness, the need for interaction with an employee, and the technology anxiety were used as consumer trait variables. Perceived waiting time and perceived crowding were used as situational variables. 380 questionnaires were distributed to a sample group of people in their 20's and 30's, and the data were analyzed with structural equation model using AMOS 18.0 program. All of Cronbach's alpha values representing reliabilities were satisfactory. The values of Composite Reliability(CR) and Average Variance Extracted(AVE) also showed the above criteria, thus providing evidence of convergent validity. To confirm discriminant validity among the constructs, confirmatory factor analysis and correlations among all the variables were examined. The results were satisfactory. The results of this study are summarized as follows. 1. Optimism and innovativeness of TR partially influenced the motivation to use SST. People who tend to be optimistic use SST because of ease of use and fun. The innovative however, usually use SST due to its performance. However, consumer readiness of role clarity, ability and self-efficacy influence all the components of motivation to use SST, ease of use, performance and fun. The relative effect of consumer readiness on the motivation to use SST was much stronger and more significant than that of TR. No other previous studies have examined the effects of Consumer Readiness on SST usage motivation, attitude and intention. It is academically meaningful that the researchers verified that Consumer Readiness is the important precedent construct influencing the self service technology core Attitudinal Model. Our findings suggest that marketers should consider fun and ease of use attributes to promote the use of self service technology. In addition, the SST usage frequency will rise rapidly when role clarity, ability, and self-efficacy which anybody can easily handle SST is assured. If the SST usage rate is increased, waiting times for customers could be decreased. Shorter waiting time could lead to higher customer satisfaction. It may also result in making a long-term profit owing to the reduced number of employees. Thus, presentation of using SST by employees or videos showing how to use it will promote the usage attitude and intent. 2. In SST core attitudinal model, performance and fun factors among SST usage motivation affected attitudes of using SST. The attitude of using SST highly influenced intent to use SST. This result is consistent with previous researches that dealt with the relationship between motivation, attitude and intention. Expectation of using SST could result in good performance just like the effect of ordering menu to service employees and to have fun since fun during its use could promote more SST usage rate. 3. In the relationship among motivation, attitude and intent in SST core attitudinal model, the moderating effect of consumer traits(self-consciousness, need for interaction with service employees and technology anxiety) and situational factors(perceived crowding and perceived waiting time) were tested. The results also supported the hypothesized moderating effects except perceived crowding. The highly self-conscious tended to form attitudes to use SST because of its fun compared to those who were less self-conscious because of its performance. People who had a high need for interaction with service employees tended to use SST for its performance. This result indicates that if ordering results are assured, SST is easily accessible to even consumers who have a high need for interaction with a service employee. When SST is easy to use, attitudes strengthen intent among people who had a high level of anxiety of technology. People who had low technology anxiety formed attitudes to use SST because of its performance. Service firms must ensure their self service technology is designed to be easy to use for those who have a high level of technology anxiety. Shorter perceived waiting times strengthened the attitude to use self service technology because of its fun. If the fun aspect is assured, people willing to use self service technology even perceive waiting time to be shorter than it actually is. Greater perceived waiting times form higher level of intent to use self service technology than those of shorter perceived waiting times. This implies that people view self service technology as a faster alternative to ordering service employees. The fun aspect of self service technology will attract a higher rate of usage for self service technology. 4. It has been proven that ease of use, performance and fun aspects are very important factors in motivation to form attitudes and intent to use self service technology regardless of the amount of perceived waiting time, self-consciousness, need for interaction with service employees, and technology anxiety. Service firms must consider these motivation aspects(ease of use, performance and fun)strongly in their promotion to use self service technology. Ease of use, assuring absolute performance compared to interaction with service employees', and adding a fun aspect will positively strengthen consumers' attitudes and intent to use self service technology. Summarizing the moderating effects, fun is the most valuable factor triggering SST usage attitude and intention. Therefore, designing self service technology to be fun will be the key to its success. This study focused on the touch screen self service technology in fast food restaurant. Although it has its limits due to the fact that it is hard to generalize the results to any other self service technology, the conceptual framework of this study can be applied to future research of any other service site.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70