• Title/Summary/Keyword: average model

Search Result 6,720, Processing Time 0.032 seconds

A Study on Efficient Methods of Pesticide Control Using Agricultural Unmanned Aerial Vehicles (농업용 무인항공기를 활용한 농약방제 효율성 방안에 관한 연구)

  • Jeong, Ga-Young;Cho, Yong-Yoon
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.35-40
    • /
    • 2022
  • In the agricultural environment, pesticide control requires a high risk of work and a high labor force for farmers. The effectiveness of pesticide control using unmanned aerial vehicles varies according to climate, land type, and characteristics of unmanned aerial vehicles. Therefore, an effective method for pesticide control by unmanned aerial vehicles considering the spraying conditions and environmental conditions is required. In this paper, we propose an efficient pesticide control system based on agricultural unmanned aerial vehicles considering the application conditions and environmental information for each crop. The effectiveness of the proposed model was demonstrated by measuring the drop uniformity of pesticides according to the change in altitude and speed after attaching the sensory paper and measuring the penetration rate of the drug inside the canopy according to the change in crop growth conditions. Experiment result, the closer the height of the UAV is to the ground, the more evenly the crops are sprayed, but for safety reasons, 2m more is suitable, and on average a speed of 2m/s is most suitable for control. The proposed control system is expected to help develop intelligent services based on the use of various unmanned aerial vehicles in agricultural environments.

Establishment of a Nondestructive Analysis Method for Lignan Content in Sesame using Near Infrared Reflectance Spectroscopy (근적외선분광(NIRS)을 이용한 참깨의 lignan 함량 비파괴 분석 방법 확립)

  • Lee, Jeongeun;Kim, Sung-Up;Lee, Myoung-Hee;Kim, Jung-In;Oh, Eun-Young;Kim, Sang-Woo;Kim, MinYoung;Park, Jae-Eun;Cho, Kwang-Soo;Oh, Ki-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • Sesamin and sesamolin are major lignan components with a wide range of potential biological activities of sesame seeds. Near infrared reflectance spectroscopy (NIRS) is a rapid and non-destructive analysis method widely used for the quantitative determination of major components in many agricultural products. This study was conducted to develop a screening method to determine the lignan contents for sesame breeding. Sesamin and sesamolin contents of 482 sesame samples ranged from 0.03-14.40 mg/g and 0.10-3.79 mg/g with an average of 4.93 mg/g and 1.74 mg/g, respectively. Each sample was scanned using NIRS and calculated for the calibration and validation equations. The optimal performance calibration model was obtained from the original spectra using partial least squares (PLS). The coefficient of determination in calibration (R2) and standard error of calibration (SEC) were 0.963 and 0.861 for sesamin and 0.875 and 0.292 for sesamolin, respectively. Cross-validation results of the NIRS equation showed an R2 of 0.889 in the prediction for sesamin and 0.781 for sesamolin and a standard error of cross-validation (SECV) of 1.163 for sesamin and 0.417 for sesamolin. The results showed that the NIRS equation for sesamin and sesamolin could be effective in selecting high lignan sesame lines in early generations of sesame breeding.

A Study on the Development of Experiential STEAM Program Based on Visual Impairment Using 3D Printer: Focusing on 'Sun' Concept (3D프린터 활용 체험형 STEAM 프로그램 개발 연구: '태양' 개념을 중심으로)

  • Kim, Sanggul;Kim, Hyoungbum;Kim, Yonggi
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.62-75
    • /
    • 2022
  • In this study, experiential STEAM program using 3D printer was produced focusing on the content elements of 'solar' in the 2015 revised science curriculum, and in order to find out the effectiveness of the STEAM program, analyzed creative problem solving, STEAM attitude, and STEAM satisfaction by applying it to two middle school 77 students simple random sampled. The results of this study are as follows. First, a solar tactile model was produced using a 3D printer, and a program was developed to enable students to actively learn experience-oriented activities through visual impairment experiences. Second, in the response sample t-test by the difference in pre- and post-score of STEAM attitude tests, significant statistical test results were shown in 'interest', 'consideration', 'self-concept', 'self-efficacy', and 'science and engineering career choice' sub-factors except 'consideration' and 'usefulness / value recognition' sub-factors (p<.05). Third,, the STEAM satisfaction test conducted after the application of the 3D printer-based STEAM program showed that the average value range of sub-factors were 3.66~3.97, which improved students' understanding and interest in science subjects through the 3D printer-based STEAM program.

Analysis of Albedo by Level-2 Land Use Using VIIRS and MODIS Data (VIIRS와 MODIS 자료를 활용한 중분류 토지이용별 알베도 분석)

  • Lee, Yonggwan;Chung, Jeehun;Jang, Wonjin;Kim, Jinuk;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1385-1394
    • /
    • 2022
  • This study was to analyze the change in albedo by level-2 land cover map for 20 years(2002-2021) using MODerate resolution Imaging Spectroradiometer (MODIS) data. Also, the difference from the MODIS data was analyzed using the 10-year (2012-2021) data of Visible Infrared Imaging Radiometer Suite (VIIRS). For the albedo data of MODIS and VIIRS, daily albedo data, MCD43A3 and VNP43IA, of 500 m spatial resolution of sinusoidal tile grid produced by Bidirectional Reflectance Distribution Function (BRDF) model were prepared for the South Korea range. Reprojection was performed using the code written based on Python 3.9, and the nearest neighbor was applied as the resampling method. White sky albedo and black sky albedo of shortwave were used for analysis. As a result of 20-year albedo analysis using MODIS data, the albedo tends to rise in all land use. Compared to the 2000s (2002-2011), the average albedo of the 2010s (2012-2021) showed the most significant increase of 0.0027 in the forest area, followed by the grass increase of 0.0024. As a result of comparing the albedo of VIIRS and MODIS, it was found that the albedo of VIIRS was larger from 0.001 to 0.1, which was considered to be due to differences in the surface reflectivity according to the time of image capture and sensor characteristics.

Isolation and Identification of the Causal Agents of Red Pepper Wilting Symptoms (고추 시듦 증상을 일으키는 원인균의 분리 및 동정)

  • Lee, Kyeong Hee;Kim, Heung Tae
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.143-151
    • /
    • 2022
  • In order to investigate the cause of wilting symptoms in red pepper field of Korea, the frequency of occurrence of red peppers showing wilting symptoms was investigated in pepper cultivation fields in Goesan, Chungcheongbuk-do for 5 years from 2010 to 2014. There was a difference in the frequency of wilting symptoms depending on the year of investigation, but the frequency of occurrence increased as the investigation period passed from June and July to August. During this period, Ralstonia solanacearum causing the bacterial wilt was isolated at a rate four times higher than Phytophthora capsica causing the Phytophthora late blight. In wilted peppers collected in Goesan of Chungbuk and Andong of Gyeongbuk in 2013 and 2014, R. solanacearum and P. capsici were isolated from 20.3% and 3.8% of the total fields, respectively. In the year with a high rate of wilting symptoms, the average temperature was high, and the disease occurrence date of the bacterial wilt, estimated with disease forecasting model, was also fast. The inconsistency between the number of days at risk of Phytophthora late blight and the frequency of occurrence of wither symptoms is thought to be due to the generalization of the use of cultivars resistant to the Phytophthora late blight in the pepper field. In our study, the wilting symptoms were caused by the bacterial wilt caused by R. solanacearum rather than the Phytophthora late blight caused by P. capsica, which is possibly caused by increasing cultivation of pepper varieties resistant to the Phytophthora late blight in the field.

Analysis of the Contribution of Biomass Burning Emissions in East Asia to the PM10 and Radiation Energy Budget in Korea (동아시아의 생체연소 배출물에 대한 한국의 미세먼지 기여도 및 복사 에너지 수지 분석)

  • Lee, Ji-Hee;Cho, Jae-Hee;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.265-282
    • /
    • 2022
  • This study analyzes the impact of long-range transport of biomass burning emissions from northeastern China on the concentration of particulate matter of diameter less than 10 ㎛ (PM10) in Korea using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Korea was impacted by anthropogenic emissions from eastern China, dust storms from northern China and Mongolia, and biomass burning emissions from northeast China between April 4-and 7, 2020. The contributions of long-range PM10 transport were calculated by separating biomass burning emissions from mixed air pollutants with anthropogenic emissions and dust storms using the zeroing-out method. Further, the radiation energy budget over land and sea around the Korean Peninsula was analyzed according to the distribution of biomass burning emissions. Based on the WRF-Chem simulation during April 5-6, 2020, the contribution of long-range transport of biomass burning emissions was calculated as 60% of the daily PM10 average in Korea. The net heat flux around the Korean Peninsula was in a negative phase due to the influence of the large-scale biomass burning emissions. However, the contribution of biomass burning emissions was analyzed to be <45% during April 7-8, 2020, when the anthropogenic emissions from eastern China were added to biomass burning emissions, and PM10 concentration increased compared with the concentration recorded during April 5-6, 2020 in Korea. Furthermore, the net heat flux around the Korean Peninsula increased to a positive phase with the decreasing influence of biomass burning emissions.

A study on estimating the quick return flow from irrigation canal of agricultural water using watershed model (유역모델을 이용한 농업용수 신속회귀수량 산정 연구)

  • Lee, Jiwan;Jung, Chunggil;Kim, Daye;Maeng, Seungjin;Jeong, Hyunsik;Jo, Youngsik;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.321-331
    • /
    • 2022
  • In this study, we tried to present a method for calculating the amount of regression using a watershed modeling method that can simulate the hydrological mechanism of water balance analysis and agricultural water based on watershed unit. Using the soil water assessment tool (SWAT), a watershed water balance analysis was conducted considering the simulation of paddy fields for the Manbongcheon Standard Basin (97.34 km2), which is a representative agricultural area of the Yeongsan river basin. Before evaluating return flow, the SWAT was calibrated and validated using the daily streamflow observation data at Naju streamflow gauge station (NJ). The coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), Root-Mean-Square Error (RMSE) of NJ were 0.73, 0.70, 0.64 mm/day. Based on the calibration results for three years (2015-2017), the quick return flow and the return rate compared to the water supply amount for the irrigation period (April 1 to September 30) were calculated, and the average return flow rate was 53.4%. The proposed method of this study may be used as foundation data to optimal agricultural water supply plan for rational watershed management.

Quantitative Evaluations of Deep Learning Models for Rapid Building Damage Detection in Disaster Areas (재난지역에서의 신속한 건물 피해 정도 감지를 위한 딥러닝 모델의 정량 평가)

  • Ser, Junho;Yang, Byungyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.381-391
    • /
    • 2022
  • This paper is intended to find one of the prevailing deep learning models that are a type of AI (Artificial Intelligence) that helps rapidly detect damaged buildings where disasters occur. The models selected are SSD-512, RetinaNet, and YOLOv3 which are widely used in object detection in recent years. These models are based on one-stage detector networks that are suitable for rapid object detection. These are often used for object detection due to their advantages in structure and high speed but not for damaged building detection in disaster management. In this study, we first trained each of the algorithms on xBD dataset that provides the post-disaster imagery with damage classification labels. Next, the three models are quantitatively evaluated with the mAP(mean Average Precision) and the FPS (Frames Per Second). The mAP of YOLOv3 is recorded at 34.39%, and the FPS reached 46. The mAP of RetinaNet recorded 36.06%, which is 1.67% higher than YOLOv3, but the FPS is one-third of YOLOv3. SSD-512 received significantly lower values than the results of YOLOv3 on two quantitative indicators. In a disaster situation, a rapid and precise investigation of damaged buildings is essential for effective disaster response. Accordingly, it is expected that the results obtained through this study can be effectively used for the rapid response in disaster management.

Single Image Super Resolution Based on Residual Dense Channel Attention Block-RecursiveSRNet (잔여 밀집 및 채널 집중 기법을 갖는 재귀적 경량 네트워크 기반의 단일 이미지 초해상도 기법)

  • Woo, Hee-Jo;Sim, Ji-Woo;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.429-440
    • /
    • 2021
  • With the recent development of deep convolutional neural network learning, deep learning techniques applied to single image super-resolution are showing good results. One of the existing deep learning-based super-resolution techniques is RDN(Residual Dense Network), in which the initial feature information is transmitted to the last layer using residual dense blocks, and subsequent layers are restored using input information of previous layers. However, if all hierarchical features are connected and learned and a large number of residual dense blocks are stacked, despite good performance, a large number of parameters and huge computational load are needed, so it takes a lot of time to learn a network and a slow processing speed, and it is not applicable to a mobile system. In this paper, we use the residual dense structure, which is a continuous memory structure that reuses previous information, and the residual dense channel attention block using the channel attention method that determines the importance according to the feature map of the image. We propose a method that can increase the depth to obtain a large receptive field and maintain a concise model at the same time. As a result of the experiment, the proposed network obtained PSNR as low as 0.205dB on average at 4× magnification compared to RDN, but about 1.8 times faster processing speed, about 10 times less number of parameters and about 1.74 times less computation.

A regression for estimating metabolizable glucose in diets of weaned piglets for optimal growth performance

  • Lv, Liangkang;Feng, Zhi;Zhang, Dandan;Lei, Long;Zhang, Hui;Liu, Zhengya;Ren, Ying;Zhao, Shengjun
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1643-1652
    • /
    • 2021
  • Objective: Two experiments were conducted to provide a new approach for evaluating feed nutritional value by metabolizable glucose (MG) in piglet diets with different levels of starch and crude fiber. In Exp 1, a regression equation for MG was generated. In Exp 2, the equation was verified, and the optimal growth performance of piglets under appropriate MG levels was tested. Methods: In Exp 1, 20 weaned piglets (7.74±0.81 kg body weight [BW]) were randomly assigned to 1 of 4 treatments, including the basal diet containing different levels of MG (starch, 25.80%, 31.67%, 45.71%, 49.36%; crude fiber, 1.23%, 1.35%, 1.80%, 1.51%). The piglets were implanted with an ileal fistula, cannulation of the carotid artery, portal vein, and mesenteric artery. The chyme from the ileum fistula and blood samples were collected. In Exp 2, 30 weaned piglets (8.96±0.50 kg BW) were randomly assigned to 1 of 5 treatments, including the experimental diets with different levels of MG (37.6, 132.5, 300.0, 354.3, and 412.5 g/kg). The piglets' BW, and feed consumption were recorded to calculate growth performance during the 28-d experiment. Results: In Exp 1, the MG levels in 4 diets were 239.62, 280.68, 400.79, and 454.35 g/kg. The regression equation for the MG levels and dietary nutrients was: Y (MG) = 12.13×X1 (starch)+23.18×X2 (crude fiber)-196.44 (R2 = 0.9989, p = 0.033). In Exp 2, treatments with 132.5 and 300.0 g/kg MG significantly (p<0.05) increased average daily gain and feed conversion efficiency of weaned piglets, increased digestibility of crude fat, and had no effect on digestibility of crude protein compared to 300.0 to 412.5 g/kg MG. Conclusion: The pig model combining the ileum fistula and cannulation of blood vessels was successfully used to determine the dietary MG levels. The recommended MG level in weaned pig diets is 132.5 to 300.0 g/kg.