• Title/Summary/Keyword: average model

Search Result 6,720, Processing Time 0.033 seconds

Bootstrap Confidence Intervals for a One Parameter Model using Multinomial Sampling

  • Jeong, Hyeong-Chul;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.465-472
    • /
    • 1999
  • We considered a bootstrap method for constructing confidenc intervals for a one parameter model using multinomial sampling. The convergence rates or the proposed bootstrap method are calculated for model-based maximum likelihood estimators(MLE) using multinomial sampling. Monte Carlo simulation was used to compare the performance of bootstrap methods with normal approximations in terms of the average coverage probability criterion.

  • PDF

Semantic Role Labeling using Biaffine Average Attention Model (Biaffine Average Attention 모델을 이용한 의미역 결정)

  • Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.662-667
    • /
    • 2022
  • Semantic role labeling task(SRL) is to extract predicate and arguments such as agent, patient, place, time. In the previously SRL task studies, a pipeline method extracting linguistic features of sentence has been proposed, but in this method, errors of each extraction work in the pipeline affect semantic role labeling performance. Therefore, methods using End-to-End neural network model have recently been proposed. In this paper, we propose a neural network model using the Biaffine Average Attention model for SRL task. The proposed model consists of a structure that can focus on the entire sentence information regardless of the distance between the predicate in the sentence and the arguments, instead of LSTM model that uses the surrounding information for prediction of a specific token proposed in the previous studies. For evaluation, we used F1 scores to compare two models based BERT model that proposed in existing studies using F1 scores, and found that 76.21% performance was higher than comparison models.

Hourly Average Wind Speed Simulation and Forecast Based on ARMA Model in Jeju Island, Korea

  • Do, Duy-Phuong N.;Lee, Yeonchan;Choi, Jaeseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1548-1555
    • /
    • 2016
  • This paper presents an application of time series analysis in hourly wind speed simulation and forecast in Jeju Island, Korea. Autoregressive - moving average (ARMA) model, which is well in description of random data characteristics, is used to analyze historical wind speed data (from year of 2010 to 2012). The ARMA model requires stationary variables of data is satisfied by power law transformation and standardization. In this study, the autocorrelation analysis, Bayesian information criterion and general least squares algorithm is implemented to identify and estimate parameters of wind speed model. The ARMA (2,1) models, fitted to the wind speed data, simulate reference year and forecast hourly wind speed in Jeju Island.

Probabilistic Model for Performance Analysis of a Heuristic with Multi-byte Suffix Matching

  • Choi, Yoon-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.711-725
    • /
    • 2013
  • A heuristic with multi-byte suffix matching plays an important role in real pattern matching algorithms. By skipping many characters at a time in the process of comparing a given pattern with the text, the pattern matching algorithm based on a heuristic with multi-byte suffix matching shows a faster average search time than algorithms based on deterministic finite automata. Based on various experimental results and simulations, the previous works show that the pattern matching algorithms with multi-byte suffix matching performs well. However, there have been limited studies on the mathematical model for analyzing the performance in a standard manner. In this paper, we propose a new probabilistic model, which evaluates the performance of a heuristic with multi-byte suffix matching in an average-case search. When the theoretical analysis results and experimental results were compared, the proposed probabilistic model was found to be sufficient for evaluating the performance of a heuristic with suffix matching in the real pattern matching algorithms.

Torsional Analysis of RC Beam Using Average Strains (평균변형률을 이용한 RC보의 비틀림 해석)

  • Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

Shape Optimization of Axial Flow Fan Blade Using Surrogate Model (대리모델을 사용한 축류송풍기 블레이드의 형상 최적화)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2440-2443
    • /
    • 2008
  • This paper presents a three dimensional shape optimization procedure for a low-speed axial flow fan blade with a weighted average surrogate model. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations. Six variables from airfoil profile and lean are selected as design variables. 3D RANS solver is used to evaluate the objective functions of total pressure efficiency. Surrogate approximation models for optimization have been employed to find the optimal design of fan blade. A search algorithm is used to find the optimal design in the design space from the constructed surrogate models for the objective function. The total pressure efficiency is increased by 0.31% with the weighted average surrogate model.

  • PDF

MODELING AND PI CONTROL OF DIESEL APU FOR SERIES HYBRID ELECTRIC VEHICLES

  • HE B.;OUYANG M.;LU L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.91-99
    • /
    • 2006
  • The diesel Auxiliary Power Unit (APU) for vehicle applications is a complex nonlinear system. For the purpose of this paper presents a dynamic average model of the whole system in an entirely physical way, which accounts for the non-ideal behavior of the diode rectifier, the nonlinear phenomena of generator-rectifier set in an elegant way, and also the dynamics of the dc load and diesel engine. Simulation results show the accuracy of the model. Based on the average model, a simple PI control scheme is proposed for the multivariable system, which includes the steps of model linearization, separate PI controller design with robust tuning rules, stability verification of the overall system by considering it as an uncertain one. Finally it is tested on a detailed switching model and good performances are shown for both set-point following and disturbance rejection.

Multi-view Rate Control based on HEVC for 3D Video Services

  • Lim, Woong;Lee, Sooyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.245-249
    • /
    • 2013
  • In this paper, we propose two rate control algorithms for multi-view extension of HEVC with two rate control algorithms adopted in HEVC and analyze the multi-view rate control performance. The proposed multi-view rate controls are designed on HEVC-based multi-view video coding (MV-HEVC) platform with consideration of high-level syntax, inter-view prediction, etc. not only for the base view but also for the extended views using the rate control algorithms based on URQ (Unified Rate-Quantization) and R-lambda model adopted in HEVC. The proposed multi-view rate controls also contain view-wise target bit allocation for providing the compatibility to the base view. By allocating the target bitrates for each view, the proposed multi-view rate control based on URQ model achieved about 1.83% of average bitrate accuracy and 1.73dB of average PSNR degradation. In addition, about 2.97% of average bitrate accuracy and 0.31dB of average PSNR degradation are achieved with the proposed multi-view rate control based on R-lambda model.

Study on Small-signal Modeling and Controller Design of DC-DC Dual Active Bridge Converters (DC-DC Dual Active Bridge 컨버터의 소신호 모델링 및 제어기 설계에 관한 연구)

  • Lee, Won-Bin;Choi, Hyun-Jun;Cho, Jin-Tae;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.159-165
    • /
    • 2017
  • Small-signal modeling and controller design methodology are proposed to improve the dynamics and stability of a DC-DC dual active bridge (DAB) converter. The state-space average method has a limitation when applied to the DAB converter because its state variables are nonlinear and have zero average values in a switching period. Therefore, the small-signal model and the frequency response of the DAB converter are derived and analyzed using a generalized average method instead of conventional modeling methods. The design methodology of a lead-lag controller instead of the conventional proportional-integral controller is also proposed using the derived small-signal model. The accuracy and performance of the proposed small-signal model and controller are verified by simulation and experimental results with a 500 W prototype DAB converter.

CHMM Modeling using LMS Algorithm for Continuous Speech Recognition Improvement (연속 음성 인식 향상을 위해 LMS 알고리즘을 이용한 CHMM 모델링)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.377-382
    • /
    • 2012
  • In this paper, the echo noise robust CHMM learning model using echo cancellation average estimator LMS algorithm is proposed. To be able to adapt to the changing echo noise. For improving the performance of a continuous speech recognition, CHMM models were constructed using echo noise cancellation average estimator LMS algorithm. As a results, SNR of speech obtained by removing Changing environment noise is improved as average 1.93dB, recognition rate improved as 2.1%.