• 제목/요약/키워드: average force

검색결과 949건 처리시간 0.024초

대추 및 대추가지의 물리적 특성 (Physical Properties or Jujube (Zizyphus jujuba miller) and Jujube Branches)

  • 민경선;이상우;허윤근;서정덕;맹성렬
    • Journal of Biosystems Engineering
    • /
    • 제27권4호
    • /
    • pp.283-292
    • /
    • 2002
  • Mechanical and physical properties of various parts of jujube (Zizyphus jojoba Miller) such as fruits, leaves, secondary branches, and leafy stems were measured and analyzed. The physical dimensions of the fruits were measured using a digital caliper, and the detachment force of the fruit and leafy stems was measured using a force gauge. The physical characteristics of the secondary branches such as the modulus of elasticity and the torsional rigidity were tested using a universal testing machine (UTM). The physical characteristics of leafy stems such as length and weight were also measured using a digital caliper and a digital scale, respectively. The detachment force of leafy stems and the area of the leaf also measured. The terminal velocities of the jujube fruits, leaves, and leafy stems were measured using a custom made terminal velocity experiment system. Diameter of the major and minor axis of the jujube fruit, weight of the fruit, and detachment force of the fruit stem was average of 32.02 mm, 23.92 mm. 10.0 ${\times}$ 10$\^$6/ ㎥, 8.99 g, and 5.43 N. respectively. The detachment forces of the jujube fruits increased and the force-to-weight ratio of the jujube fruits decreased as the weight of the jujube fruits increased. The modulus of elasticity of the secondary branches of the jujube was average of 7.01 ${\times}$ 10$\^$8/ N/㎡ and decreased as diameter of the secondary branches increased. The average torsional rigidity of the secondary jujube branches was 5.2 ${\times}$ 10$\^$-/ N/㎡, and the torsional rigidity decreased as the secondary branch diameter increased. The distribution of the torsional rigidity data associated with the diameter of the branches, however. widely scattered and it was difficult to find any relationship between the diameter of the branches and the torsional rigidity of tile branches. The weight of the leafy stems, number of loaves attached to the leafy stems, diameter of the stem side of the leafy stems, diameter of the leafy stem end was average or 0.7 g, 6.6 ea, 12.2 cm, 4.5 mm, and 2.7 mm, respectively. The major and minor axis of the .jujube loaves, area of leaves, weight of the leaves. and detachment force of the leaves was average of 5.7 cm, 3.3 cm, 12.98 cm$^2$, 0.20 g, and 4.39 N, respectively. The terminal velocity of the .jujube fruits increased as the weight of the fruits increased. The terminal velocity of the leafy stems, however, did not show a relationship with the weight of the leafy stems and the number of leaves attached to the leafy stem. The terminal velocity, however, slightly increased as the length of the leafy stems increased.

원자현미경을 이용한 생체물질의 접착력 측정기술 개발 (Novel measuring technique for biological adhesion forces using AFM)

  • 김성주;문원규;전종협
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.641-644
    • /
    • 2005
  • The study on the interaction forces of some biological materials is important to understanding biological phenomena and their application to practical purpose. This paper introduces a measuring technique for biological adhesive forces using the AFM(Atomic Force Microscope). Since no standardized thesis on adhesive forces exist, the adhesive forces is defined as adhesive forces against a hardened surface of biological materials. To grant the results are meaningful, which is based on the understanding the surface characteristics of biological materials using the AFM, a nominal value of average adhesive force per unit area should be measured. Therefore the modified AFM probe with small micro glass bead was proposed so that it can guarantee the required contact area for measuring the average adhesive forces. A pyrex glass substrate with circular patterns, which was fabricated by micromachining technique, is introduced in order to controll the contact area. The two types of mussel adhesive proteins, Celltak and recombinant-MGFP5, were tested by the proposed measuring method. The test results show that the adhesive force of the mussel adhesive proteins can be reliably measured by use of this method.

  • PDF

랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석 (Dynamic Analysis of Guyed Tower Subjected to Random Waves)

  • 유정선;윤정봉
    • 한국해양공학회지
    • /
    • 제1권1호
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF

스키 카빙턴 동작 시 기술 수준에 따른 동작의 차이 연구 (The Differences in the Ski Carving Turn Motion According to Level of Exper tise)

  • 은선덕;현무성
    • 한국운동역학회지
    • /
    • 제20권3호
    • /
    • pp.319-325
    • /
    • 2010
  • The purpose of this research was to investigate the differences in the ski carving turn motion according to level of expertise. The posture and movement of 6 skiers nearby the fall-line was evaluated with a biomechanical approach focusing the rotational mechanics. The slope was at an angle of $9^{\circ}$ and the following variables were measured and calculated: tangential velocity, change of COM height after passing fall-line, width between feet, angle between upper body and thigh, trunk angle, average radius of curvature and average centripetal force. The expert skiers minimized their center of mass height movement and maintained the width of between their feet after the passing the fall-line in comparison with the beginners and intermediate skiers. The experts restrained themselves from pushing their upper body downward after the turn to maximize the centripetal force. The experts in comparison with the beginners and intermediate skiers during the turn didn't have to reduce their radius of curvature to maintain a high centripetal force. It was concluded, that the most important factor affecting the centripetal force, was for the beginners and intermediate skiers, to minimize their movement while using the appropriate amount of edging.

분산분석을 이용한 로드헤더 절삭시험 입출력 인자 간의 기여도 조사 (Contribution Assessment of Roadheader Performance Indexes by Analysis of Variance)

  • 김문규;송창헌;오주영;조정우
    • 터널과지하공간
    • /
    • 제32권6호
    • /
    • pp.386-396
    • /
    • 2022
  • 로드헤더에 미치는 변수의 영향력을 분석하기 위해 픽커터 절삭시험 관련 참고문헌들을 조사하였고, 수록된 데이터들을 수집하였다. 입력 인자는 일축압축강도, 절삭 깊이, 절삭 간격, 받음각, 비틀림각, 출력 인자는 비에너지, 절삭력, 수직력으로 결정했다. 입력 인자와 출력 인자로 분류 후 실험계획법을 작성하였고 분산분석을 이용해 변수들에 대한 기여도를 조사하였다. 그 결과, 절삭력과 비에너지에 가장 큰 영향을 미치는 요인은 일축압축강도와 절삭 간격으로 분석되었다.

닭발 뼈 제거장치 개발에 관한 연구(1) - 닭발 뼈 제거장치의 설계요인 분석 - (Studies on Development of a Chicken Feet-bone Remover (I) - Analysis of design factor with Chicken Feet-bone Remover -)

  • 이정택;김태한
    • Journal of Biosystems Engineering
    • /
    • 제36권4호
    • /
    • pp.252-256
    • /
    • 2011
  • Consumption of chicken feet has been increasing recently, thus it was necessary to produce good quality of bone less chicken feet. In the process of bone removal during chicken feet production, feeding, conveying, cutting and bone removing process takes about 90% of overall labor. Therefore, the development of a chicken feet-bone remover was necessary to reduce the cost of labor. There has been few research on the chicken feet bone removers so far in Korea as well as worldwide. So the main objective of this study was to develop a chicken feet-bone remover which is suitable for domestic circumstances. The average length of chicken feet was 113.3 mm with maximum and minimum lengths of 135.8 mm and 92.2 mm, and the average diameter of chicken leg was 12.5 mm, average width of the toe was 56.2 mm and the average weight of chicken feet was 26.4 g with maximum and minimum weight of 39.3 g and 16.9 g, respectively. Also, the average moisture content was 64.7% (w.b). The average cutting force of little toes was 15.6 N for the size ranges of less than 3.5 mm, 22.5 N, 3.5~6.0 mm and 30.3 N for larger than 6.0 mm in diameter, respectively.

비절삭 저항상수에 따른 절삭력 예측 (Cutting Force Estimation Considering the Specific Cutting Force Constant)

  • 김종도;윤문철
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.75-82
    • /
    • 2019
  • Few studies have been conducted regarding theoretical turning force modelling while considering cutting constant. In this paper, a new cutting force modelling technique was suggested which considers the specific cutting force coefficients for turning. The specific cutting force is the multiplication of the cutting force coefficient and uncut chip thickness. This parameter was used for experimental modelling and prediction of theoretical cutting force. These coefficients, which can be obtained by fitting measured average forces in several conditions, were used for the formulation of three theoretical cutting forces for turning. The cutting force mechanism was verified in this research and its results were compared with each of the experimental and theoretical forces. The deviation of force was incurred by a small amount in this model and the predicted force considering feed rate, nose radius, and radial depth shows a physical behavior in main force, normal force, and feeding force, respectively. Therefore, this modelling technique can be used to effectively predict three turning forces with different tool geometries considering cutting force coefficients.

Kinetics Analysis during Stance Phase of Fore Foot Contact versus Rear Foot Contact in Running

  • Cho, Woong;Han, Jae Woong;Kim, A Young;Park, Sung Kyu;Kim, Hyung Soo
    • 국제물리치료학회지
    • /
    • 제8권1호
    • /
    • pp.1084-1089
    • /
    • 2017
  • The purpose of this study was to compare and analyze the difference of the ankle joint movements during landing. Seven adult males voluntarily participated in the study and the average foot size of the subjects was 269.8 mm. Image analysis equipment and the ground reaction force plate (landing type) was used to measure th kinetic variables. As a result of this study, it was confirmed that the vertical ground reaction force peak point appeared once in the barefoot with forefoot, while two peak points appeared in the barefoot and functional shoe foot with rear foot landing. About ankle angle, fore foot landing ankle angle, the average with bare foot landing was $-10.302^{\circ}$ and the average with functional shoe foot landing was $-2.919^{\circ}$. Also about rear foot landing, ankle angle was $11.648^{\circ}$ with bare foot landing and $15.994^{\circ}$ with functional shoe landing. The fore foot landing, ankle joint force analysis produced 1423.966N with barefoot and 1493.264N with functional shoes. But, the rear foot landing, ankle joint force analysis produced 1680.154N with barefoot and 1657.286N with functional shoes. This study suggest that the angle of ankle depends on the landing type and bare foot running/functionalized shod running, and ankle joint forces also depends on landing type.

2축 힘/모멘트센서를 이용한 원통형 손가락 힘측정장치 개발 및 특성평가 (Development of Cylindrical-type Finger Force Measuring System Using Two-axis Force/Moment Sensor and its Characteristic Evaluation)

  • 김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.484-489
    • /
    • 2011
  • Some patients can't use their hands because of inherent and acquired paralysis of their fingers. Their fingers can recover with rehabilitative training, and the extent of rehabilitation can be judged by grasping a cylindrical-object with their fingers. At present, the cylindrical-object used in hospitals is only a cylinder which cannot measure grasping force of the fingers. Therefore, doctors must judge the extent of rehabilitation by watching patients' fingers as they grasp the cylinder. A cylindrical-type finger force measuring system which can measure the grasping force of patients' fingers should be developed. This paper looks at the development of a cylindrical-type finger force measuring system with two-axis force/moment sensor which can measure grasping force. The two-axis force/moment sensor was designed and fabricated, and the high-speed force measuring device was designed and manufactured by using DSP (digital signal processing). Also, cylindrical-type finger force measuring system was developed using the developed two-axis force/moment sensor and the high-speed force measuring device, and the grasping force tests of men were performed using the developed system. The tests confirm that the average finger forces of right and left hands for men were about 186N and 172N respectively.

Experimental investigations and development of mathematical model to estimate drop diameter and jet length

  • Roy, Amitava;Suneel, G.;Gayen, J.K.;Ravi, K.V.;Grover, R.B.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3229-3235
    • /
    • 2021
  • The key process used in nuclear industries for the management of radiotoxicity associated with spent fuel in a closed fuel cycle is solvent extraction. An understanding of hydrodynamics and mass transfer is of primary importance for the design of mass transfer equipment used in solvent extraction processes. Understanding the interfacial phenomenon and the associated hydrodynamics of the liquid drops is essential for model-based design of mass transfer devices. In this work, the phenomenon of drop formation at the tip of a nozzle submerged in quiescent immiscible liquid phase is revisited. Previously reported force balance based models and empirical correlations are analyzed. Experiments are carried out to capture the process of drop formation using high-speed imaging technique. The images are digitally processed to measure the average drop diameter. A correlation based on the force balance model is proposed to estimate drop diameter and jet length. The average drop diameter obtained from the proposed model is in good agreement with experimental data with an average error of 6.3%. The developed model is applicable in both the necking as well as jetting regime and is validated for liquid-liquid systems having low, moderate and high interfacial tension.