• Title/Summary/Keyword: average error

Search Result 2,635, Processing Time 0.032 seconds

A Study on Damage factor Analysis of Slope Anchor based on 3D Numerical Model Combining UAS Image and Terrestrial LiDAR (UAS 영상 및 지상 LiDAR 조합한 3D 수치모형 기반 비탈면 앵커의 손상인자 분석에 관한 연구)

  • Lee, Chul-Hee;Lee, Jong-Hyun;Kim, Dal-Joo;Kang, Joon-Oh;Kwon, Young-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.5-24
    • /
    • 2022
  • The current performance evaluation of slope anchors qualitatively determines the physical bonding between the anchor head and ground as well as cracks or breakage of the anchor head. However, such performance evaluation does not measure these primary factors quantitatively. Therefore, the time-dependent management of the anchors is almost impossible. This study is an evaluation of the 3D numerical model by SfM which combines UAS images with terrestrial LiDAR to collect numerical data on the damage factors. It also utilizes the data for the quantitative maintenance of the anchor system once it is installed on slopes. The UAS 3D model, which often shows relatively low precision in the z-coordinate for vertical objects such as slopes, is combined with terrestrial LiDAR scan data to improve the accuracy of the z-coordinate measurement. After validating the system, a field test is conducted with ten anchors installed on a slope with arbitrarily damaged heads. The damages (such as cracks, breakages, and rotational displacements) are detected and numerically evaluated through the orthogonal projection of the measurement system. The results show that the introduced system at the resolution of 8K can detect cracks less than 0.3 mm in any aperture with an error range of 0.05 mm. Also, the system can successfully detect the volume of the damaged part, showing that the maximum damage area of the anchor head was within 3% of the original design guideline. Originally, the ground adhesion to the anchor head, where the z-coordinate is highly relevant, was almost impossible to measure with the UAS 3D numerical model alone because of its blind spots. However, by applying the combined system, elevation differences between the anchor bottom and the irregular ground surface was identified so that the average value at 20 various locations was calculated for the ground adhesion. Additionally, rotation angle and displacement of the anchor head less than 1" were detected. From the observations, the validity of the 3D numerical model can obtain quantitative data on anchor damage. Such data collection can potentially create a database that could be used as a fundamental resource for quantitative anchor damage evaluation in the future.

A Generalized Adaptive Deep Latent Factor Recommendation Model (일반화 적응 심층 잠재요인 추천모형)

  • Kim, Jeongha;Lee, Jipyeong;Jang, Seonghyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.249-263
    • /
    • 2023
  • Collaborative Filtering, a representative recommendation system methodology, consists of two approaches: neighbor methods and latent factor models. Among these, the latent factor model using matrix factorization decomposes the user-item interaction matrix into two lower-dimensional rectangular matrices, predicting the item's rating through the product of these matrices. Due to the factor vectors inferred from rating patterns capturing user and item characteristics, this method is superior in scalability, accuracy, and flexibility compared to neighbor-based methods. However, it has a fundamental drawback: the need to reflect the diversity of preferences of different individuals for items with no ratings. This limitation leads to repetitive and inaccurate recommendations. The Adaptive Deep Latent Factor Model (ADLFM) was developed to address this issue. This model adaptively learns the preferences for each item by using the item description, which provides a detailed summary and explanation of the item. ADLFM takes in item description as input, calculates latent vectors of the user and item, and presents a method that can reflect personal diversity using an attention score. However, due to the requirement of a dataset that includes item descriptions, the domain that can apply ADLFM is limited, resulting in generalization limitations. This study proposes a Generalized Adaptive Deep Latent Factor Recommendation Model, G-ADLFRM, to improve the limitations of ADLFM. Firstly, we use item ID, commonly used in recommendation systems, as input instead of the item description. Additionally, we apply improved deep learning model structures such as Self-Attention, Multi-head Attention, and Multi-Conv1D. We conducted experiments on various datasets with input and model structure changes. The results showed that when only the input was changed, MAE increased slightly compared to ADLFM due to accompanying information loss, resulting in decreased recommendation performance. However, the average learning speed per epoch significantly improved as the amount of information to be processed decreased. When both the input and the model structure were changed, the best-performing Multi-Conv1d structure showed similar performance to ADLFM, sufficiently counteracting the information loss caused by the input change. We conclude that G-ADLFRM is a new, lightweight, and generalizable model that maintains the performance of the existing ADLFM while enabling fast learning and inference.

SHRIMP Zircon U-Pb Age and Geochemistry of Igneous Rocks in the Ssangyong and Yongchu Valleys and Mungyeong Saejae Geosites, Mungyeong Geopark (문경지질공원 쌍룡계곡, 용추계곡, 문경새재 지질명소 화성암류의 SHRIMP 저어콘 U-Pb 연령과 지구화학)

  • Wonseok Cheong;Yoonsup Kim;Giun Han;Taehwan Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.73-94
    • /
    • 2023
  • We carried out the sensitive high resolution ion microprobe (SHRIMP) zircon U-Pb age dating and whole-rock geochemical analysis of granitoids and felsic porphyries in the Ssangyong Valley, Yongchu Valley, and Mungyeong Saejae geosites in the Mungyeong Geopark. The igneous rocks crop out in the western, northwestern and central parts of the Mungyeong city area, respectively, and intruded (meta)sedimentary successions of the Ogcheon Metamorphic Belt, Cambro-Ordovician Mungyeong Group and Jurrasic Daedong Group. The U-Pb isotopic compositions of zircon from two felsic porphyries and one granite samples in the Ssanyeong Valley yielded the Cretaceous intrusion ages of 93.9±3.3 Ma (tσ), 95.1±4.0 Ma (tσ) and 94.4±2.0 Ma (tσ), respectively. On the other hand, a felsic dike sample and a granite in the Yongchu Valley and a porphyritic granite in the Mungyeong Saejae had intrusion ages of 90.2±2.0 Ma (tσ), 91.0±3.0 Ma (tσ) and 88.6±1.5 Ma (tσ), respectively. Based on the average standard error calculated in combination with results of previous studies in this area (Lee et al., 2010; Yi et al., 2014; Aum et al., 2019), the geochronological results show that spatial variation in intrusion age of ~5 Myr between the Ssangyong (94.5±0.2 Ma) and Yongchu Valleys (89.7±0.4 Ma) is apparent. The geochemical compositions of major and trace elements in the samples showed an affinity of typical post-orogenic granite, indicating their petrogenesis during the late stage of Early Cretaceous magmatic activity possibly in association with subduction events of the Izanagi Plate.

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

A Method of Reproducing the CCT of Natural Light using the Minimum Spectral Power Distribution for each Light Source of LED Lighting (LED 조명의 광원별 최소 분광분포를 사용하여 자연광 색온도를 재현하는 방법)

  • Yang-Soo Kim;Seung-Taek Oh;Jae-Hyun Lim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.19-26
    • /
    • 2023
  • Humans have adapted and evolved to natural light. However, as humans stay in indoor longer in modern times, the problem of biorhythm disturbance has been induced. To solve this problem, research is being conducted on lighting that reproduces the correlated color temperature(CCT) of natural light that varies from sunrise to sunset. In order to reproduce the CCT of natural light, multiple LED light sources with different CCTs are used to produce lighting, and then a control index DB is constructed by measuring and collecting the light characteristics of the combination of input currents for each light source in hundreds to thousands of steps, and then using it to control the lighting through the light characteristic matching method. The problem with this control method is that the more detailed the steps of the combination of input currents, the more time and economic costs are incurred. In this paper, an LED lighting control method that applies interpolation and combination calculation based on the minimum spectral power distribution information for each light source is proposed to reproduce the CCT of natural light. First, five minimum SPD information for each channel was measured and collected for the LED lighting, which consisted of light source channels with different CCTs and implemented input current control function of a 256-steps for each channel. Interpolation calculation was performed to generate SPD of 256 steps for each channel for the minimum SPD information, and SPD for all control combinations of LED lighting was generated through combination calculation of SPD for each channel. Illuminance and CCT were calculated through the generated SPD, a control index DB was constructed, and the CCT of natural light was reproduced through a matching technique. In the performance evaluation, the CCT for natural light was provided within the range of an average error rate of 0.18% while meeting the recommended indoor illumination standard.

Usefulness of Abdominal Compressor Using Stereotactic Body Radiotherapy with Hepatocellular Carcinoma Patients (토모테라피를 이용한 간암환자의 정위적 방사선치료시 복부압박장치의 유용성 평가)

  • Woo, Joong-Yeol;Kim, Joo-Ho;Kim, Joon-Won;Baek, Jong-Geal;Park, Kwang-Soon;Lee, Jong-Min;Son, Dong-Min;Lee, Sang-Kyoo;Jeon, Byeong-Chul;Cho, Jeong-Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.157-165
    • /
    • 2012
  • Purpose: We evaluated usefulness of abdominal compressor for stereotactic body radiotherapy (SBRT) with unresectable hepatocellular carcinoma (HCC) patients and hepato-biliary cancer and metastatic liver cancer patients. Materials and Methods: From November 2011 to March 2012, we selected HCC patients who gained reduction of diaphragm movement >1 cm through abdominal compressor (diaphragm control, elekta, sweden) for HT (Hi-Art Tomotherapy, USA). We got planning computed tomography (CT) images and 4 dimensional (4D) images through 4D CT (somatom sensation, siemens, germany). The gross tumor volume (GTV) included a gross tumor and margins considering tumor movement. The planning target volume (PTV) included a 5 to 7 mm safety margin around GTV. We classified patients into two groups according to distance between tumor and organs at risk (OAR, stomach, duodenum, bowel). Patients with the distance more than 1 cm are classified as the 1st group and they received SBRT of 4 or 5 fractions. Patients with the distance less than 1 cm are classified as the 2nd group and they received tomotherapy of 20 fractions. Megavoltage computed tomography (MVCT) were performed 4 or 10 fractions. When we verify a MVCT fusion considering priority to liver than bone-technique. We sent MVCT images to Mim_vista (Mimsoftware, ver .5.4. USA) and we re-delineated stomach, duodenum and bowel to bowel_organ and delineated liver. First, we analyzed MVCT images to check the setup variation. Second we compared dose difference between tumor and OAR based on adaptive dose through adaptive planning station and Mim_vista. Results: Average setup variation from MVCT was $-0.66{\pm}1.53$ mm (left-right) $0.39{\pm}4.17$ mm (superior-inferior), $0.71{\pm}1.74$ mm (anterior-posterior), $-0.18{\pm}0.30$ degrees (roll). 1st group ($d{\geq}1$) and 2nd group (d<1) were similar to setup variation. 1st group ($d{\geq}1$) of $V_{diff3%}$ (volume of 3% difference of dose) of GTV through adaptive planing station was $0.78{\pm}0.05%$, PTV was $9.97{\pm}3.62%$, $V_{diff5%}$ was GTV 0.0%, PTV was $2.9{\pm}0.95%$, maximum dose difference rate of bowel_organ was $-6.85{\pm}1.11%$. 2nd Group (d<1) GTV of $V_{diff3%}$ was $1.62{\pm}0.55%$, PTV was $8.61{\pm}2.01%$, $V_{diff5%}$ of GTV was 0.0%, PTV was $5.33{\pm}2.32%$, maximum dose difference rate of bowel_organ was $28.33{\pm}24.41%$. Conclusion: Despite we saw diaphragm movement more than 5 mm with flouroscopy after use an abdominal compressor, average setup_variation from MVCT was less than 5 mm. Therefore, we could estimate the range of setup_error within a 5 mm. Target's dose difference rate of 1st group ($d{\geq}1$) and 2nd group (d<1) were similar, while 1st group ($d{\geq}1$) and 2nd group (d<1)'s bowel_organ's maximum dose difference rate's maximum difference was more than 35%, 1st group ($d{\geq}1$)'s bowel_organ's maximum dose difference rate was smaller than 2nd group (d<1). When applicating SBRT to HCC, abdominal compressor is useful to control diaphragm movement in selected patients with more than 1 cm bowel_organ distance.

  • PDF

Comparison of Treatment Planning System(TPS) and actual Measurement on the surface under the electron beam therapy with bolus (전자선 치료 시 Bolus를 적용한 경우 표면선량의 Treatment Planning System(TPS) 계산 값과 실제 측정값의 비교)

  • Kim, Byeong Soo;Park, Ju Young;Park, Byoung Suk;Song, Yong Min;Park, Byung Soo;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.163-170
    • /
    • 2014
  • Purpose : If electron, chosen for superficial oncotherapy, was applied with bolus, it could work as an important factor to a therapy result by showing a drastic change in surface dose. Hence the calculation value and the actual measurement value of surface dose of Treatment Planning System (TPS) according to four variables influencing surface dose when using bolus on an electron therapy were compared and analyzed in this paper. Materials and Methods : Four variables which frequently occur during the actual therapies (A: bolus thickness - 3, 5, 10 mm, B: field size - $6{\time}6$, $10{\time}10$, $15{\time}15cm2$, C: energy - 6, 9, 12 MeV, D: gantry angle - $0^{\circ}$, $15^{\circ}$) were set to compare the actual measurement value with TPS(Pinnacle 9.2, philips, USA). A computed tomography (lightspeed ultra 16, General Electric, USA) was performed using 16 cm-thick solid water phantom without bolus and total 54 beams where A, B, C, and D were combined after creating 3, 5 and 10 mm bolus on TPS were planned for a therapy. At this moment SSD 100 cm, 300 MU was investigated and measured twice repeatedly by placing it on iso-center by using EBT3 film(International Specialty Products, NJ, USA) to compare and analyze the actual measurement value and TPS. Measured film was analyzed with each average value and standard deviation value using digital flat bed scanner (Expression 10000XL, EPSON, USA) and dose density analyzing system (Complete Version 6.1, RIT, USA). Results : For the values according to the thickness of bolus, the actual measured values for 3, 5 and 10 mm were 101.41%, 99.58% and 101.28% higher respectively than the calculation values of TPS and the standard deviations were 0.0219, 0.0115 and 0.0190 respectively. The actual values according to the field size were $6{\time}6$, $10{\time}10$ and $15{\time}15cm2$ which were 99.63%, 101.40% and 101.24% higher respectively than the calculation values and the standard deviations were 0.0138, 0.0176 and 0.0220. The values according to energy were 6, 9, and 12 MeV which were 99.72%, 100.60% and 101.96% higher respectively and the standard deviations were 0.0200, 0.0160 and 0.0164. The actual measurement value according to beam angle were measured 100.45% and 101.07% higher at $0^{\circ}$ and $15^{\circ}$ respectively and standard deviations were 0.0199 and 0.0190 so they were measured 0.62% higher at $15^{\circ}$ than $0^{\circ}$. Conclusion : As a result of analyzing the calculation value of TPS and measurement value according to the used variables in this paper, the values calculated with TPS on 5 mm bolus, $6{\time}6cm2$ field size and low-energy electron at $0^{\circ}$ gantry angle were closer to the measured values, however, it showed a modest difference within the error bound of maximum 2%. If it was beyond the bounds of variables selected in this paper using electron and bolus simultaneously, the actual measurement value could differ from TPS according to each variable, therefore QA for the accurate surface dose would have to be performed.

Daily Setup Uncertainties and Organ Motion Based on the Tomoimages in Prostatic Radiotherapy (전립선암 치료 시 Tomoimage에 기초한 Setup 오차에 관한 고찰)

  • Cho, Jeong-Hee;Lee, Sang-Kyu;Kim, Sei-Joon;Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 2007
  • Purpose: The patient's position and anatomy during the treatment course little bit varies to some extend due to setup uncertainties and organ motions. These factors could affected to not only the dose coverage of the gross tumor but over dosage of normal tissue. Setup uncertainties and organ motions can be minimized by precise patient positioning and rigid immobilization device but some anatomical site such as prostate, the internal organ motion due to physiological processes are challenge. In planning procedure, the clinical target volume is a little bit enlarged to create a planning target volume that accounts for setup uncertainties and organ motion as well. These uncertainties lead to differences between the calculated dose by treatment planning system and the actually delivered dose. The purpose of this study was to evaluate the differences of interfractional displacement of organ and GTV based on the tomoimages. Materials and Methods: Over the course of 3 months, 3 patients, those who has applied rectal balloon, treated for prostatic cancer patient's tomoimage were studied. During the treatment sessions 26 tomoimages per patient, Total 76 tomoimages were collected. Tomoimage had been taken everyday after initial setup with lead marker attached on the patient's skin center to comparing with C-T simulation images. Tomoimage was taken after rectal balloon inflated with 60 cc of air for prostate gland immobilization for daily treatment just before treatment and it was used routinely in each case. The intrarectal balloon was inserted to a depth of 6 cm from the anal verge. MVCT image was taken with 5 mm slice thickness after the intrarectal balloon in place and inflated. For this study, lead balls are used to guide the registration between the MVCT and CT simulation images. There are three image fusion methods in the tomotherapy, bone technique, bone/tissue technique, and full image technique. We used all this 3 methods to analysis the setup errors. Initially, image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours and then the radiation therapist registered the MVCT images with the CT simulation images based on the bone based, rectal balloon based and GTV based respectively and registered image was compared with each others. The average and standard deviation of each X, Y, Z and rotation from the initial planning center was calculated for each patient. The image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours. Results: There was a significant difference in the mean variations of the rectal balloon among the methods. Statistical results based on the bone fusion shows that maximum x-direction shift was 8 mm and 4.2 mm to the y-direction. It was statistically significant (P=<0.0001) in balloon based fusion, maximum X and Y shift was 6 mm, 16mm respectively. One patient's result was more than 16 mm shift and that was derived from the rectal expansions due to the bowl gas and stool. GTV based fusion results ranging from 2.7 to 6.6 mm to the x-direction and 4.3$\sim$7.8 mm to the y-direction respectively. We have checked rotational error in this study but there are no significant differences among fusion methods and the result was 0.37$\pm$0.36 in bone based fusion and 0.34$\pm$0.38 in GTV based fusion.

  • PDF

Analysis of Respiratory Motional Effect on the Cone-beam CT Image (Cone-beam CT 영상 획득 시 호흡에 의한 영향 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2007
  • The cone-beam CT (CBCT) which is acquired using on-board imager (OBI) attached to a linear accelerator is widely used for the image guided radiation therapy. In this study, the effect of respiratory motion on the quality of CBCT image was evaluated. A phantom system was constructed in order to simulate respiratory motion. One part of the system is composed of a moving plate and a motor driving component which can control the motional cycle and motional range. The other part is solid water phantom containing a small cubic phantom ($2{\times}2{\times}2cm^3$) surrounded by air which simulate a small tumor volume in the lung air cavity CBCT images of the phantom were acquired in 20 different cases and compared with the image in the static status. The 20 different cases are constituted with 4 different motional ranges (0.7 cm, 1.6 cm, 2.4 cm, 3.1 cm) and 5 different motional cycles (2, 3, 4, 5, 6 sec). The difference of CT number in the coronal image was evaluated as a deformation degree of image quality. The relative average pixel intensity values as a compared CT number of static CBCT image were 71.07% at 0.7 cm motional range, 48.88% at 1.6 cm motional range, 30.60% at 2.4 cm motional range, 17.38% at 3.1 cm motional range The tumor phantom sizes which were defined as the length with different CT number compared with air were increased as the increase of motional range (2.1 cm: no motion, 2.66 cm: 0.7 cm motion, 3.06 cm: 1.6 cm motion, 3.62 cm: 2.4 cm motion, 4.04 cm: 3.1 cm motion). This study shows that respiratory motion in the region of inhomogeneous structures can degrade the image quality of CBCT and it must be considered in the process of setup error correction using CBCT images.

  • PDF

Dose verification for Gated Volumetric Modulated Arc Therapy according to Respiratory period (호흡연동 용적변조 회전방사선치료에서 호흡주기에 따른 선량전달 정확성 검증)

  • Jeon, Soo Dong;Bae, Sun Myung;Yoon, In Ha;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • Purpose : The purpose of this study is to verify the accuracy of dose delivery according to the patient's breathing cycle in Gated Volumetric Modulated Arc Therapy Materials and Methods : TrueBeam STxTM(Varian Medical System, Palo Alto, CA) was used in this experiment. The Computed tomography(CT) images that were acquired with RANDO Phantom(Alderson Research Laboratories Inc. Stamford. CT, USA), using Computerized treatment planning system(Eclipse 10.0, Varian, USA), were used to create VMAT plans using 10MV FFF with 1500 cGy/fx (case 1, 2, 3) and 220 cGy/fx(case 4, 5, 6) of doserate of 1200 MU/min. The regular respiratory period of 1.5, 2.5, 3.5 and 4.5 sec and the patients respiratory period of 2.2 and 3.5 sec were reproduced with the $QUASAR^{TM}$ Respiratory Motion Phantom(Modus Medical Devices Inc), and it was set up to deliver radiation at the phase mode between the ranges of 30 to 70%. The results were measured at respective respiratory conditions by a 2-Dimensional ion chamber array detector(I'mRT Matrixx, IBA Dosimetry, Germany) and a MultiCube Phantom(IBA Dosimetry, Germany), and the Gamma pass rate(3 mm, 3%) were compared by the IMRT analysis program(OmniPro I'mRT system software Version 1.7b, IBA Dosimetry, Germany) Results : The gamma pass rates of Case 1, 2, 3, 4, 5 and 6 were the results of 100.0, 97.6, 98.1, 96.3, 93.0, 94.8% at a regular respiratory period of 1.5 sec and 98.8, 99.5, 97.5, 99.5, 98.3, 99.6% at 2.5 sec, 99.6, 96.6, 97.5, 99.2, 97.8, 99.1% at 3.5 sec and 99.4, 96.3, 97.2, 99.0, 98.0, 99.3% at 4.5 sec, respectively. When a patient's respiration was reproduced, 97.7, 95.4, 96.2, 98.9, 96.2, 98.4% at average respiratory period of 2.2 sec, and 97.3, 97.5, 96.8, 100.0, 99.3, 99.8% at 3.5 sec, respectively. Conclusion : The experiment showed clinically reliable results of a Gamma pass rate of 95% or more when 2.5 sec or more of a regular breathing period and the patient's breathing were reproduced. While it showed the results of 93.0% and 94.8% at a regular breathing period of 1.5 sec of Case 5 and 6, it could be confirmed that the accurate dose delivery could be possible on the most respiratory conditions because based on the results of 100 patients's respiratory period analysis as no one sustained a respiration of 1.5 sec. But, pretreatment dose verification should be precede because we can't exclude the possibility of error occurrence due to extremely short respiratory period, also a training at the simulation and careful monitoring are necessary for a patient to maintain stable breathing. Consequently, more reliable and accurate treatments can be administered.