• Title/Summary/Keyword: available power

Search Result 1,805, Processing Time 0.026 seconds

Applicability of FDS for the Fire Hazard Analysis of the Fire Zone at Nuclear Power Plants (원전 화재방호구역의 화재위험 분석을 위한 FDS 적용성)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.13-18
    • /
    • 2006
  • The fire protection regulation for the nuclear power plants is based on the qualitative fire hazard assessment and the quantitative fire risk analysis, and the fire risk is managed by the fire protection plan with the appropriate balance among the fire prevention, fire suppression and the minimization of the fire effect. In these days, the zone model or the field model is generally used for the detail evaluation for the fire risk. At this paper, with consideration of the present trend, we evaluate whether the quantitative fire risk analysis and the assessment of fire result for fire areas at nuclear power plants can be possible by use of Fire Dynamics Simulator (FDS) that is the state-of-the-art fire modeling tool. Consequently, it is expected that the quantitative fire risk evaluation propelled by the fire modeling can be available as an applicable tool to improve the core damage frequency as well as the quantitative fire risk analysis.

Development of Thermal Power Boiler System Simulator Using Neural Network Algorithm (신경망 알고리즘을 이용한 화력발전 보일러 시스템 시뮬레이터 개발)

  • Lee, Jung Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.9-18
    • /
    • 2020
  • The development of a large-scale thermal power plant control simulator consists of water/steam systems, air/combustion systems, pulverizer systems and turbine/generator systems. Modeling is possible for all systems except mechanical turbines/generators. Currently, there have been attempts to develop neural network simulators for some systems of a boiler, but the development of simulator for the whole system has never been completed. In particular, autoTuning, one of the key technology developments of all power generation companies, is a technology that can be achieved only when modeling for all systems with high accuracy is completed. The simulation results show accuracy of 95 to 99% or more of the actual boiler system, so if the field PID controller is fitted to this simulator, it will be available for fault diagnosis or auto-tuning.

A Low-voltage Vibrational Energy Harvesting Circuit using a High-performance AC-DC converter (고성능 AC-DC 변환기를 이용한 저전압 진동에너지 하베스팅 회로)

  • Kong, Hyo-sang;Han, Jang-ho;Choi, Jin-uk;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.533-536
    • /
    • 2016
  • This paper describes a vibrational energy harvesting circuit with MPPT control. A high-performance AC-DC converter of which the efficiency is improved by using body-bias technique and bulk-driven technique is proposed and applied for the vibrational energy harvesting circuit design. MPPT (Maximum Power Point Tracking) control function is implemented using the linear relationship between the open-circuit voltage of a vibrational device and its MPP voltage. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a vibrational device, makes the reference voltages using sampled voltage and delivers the maximum available power to load. The proposed circuit is designed with a $0.35{\mu}m$ CMOS process, and the chip area is $1.21mm{\times}0.98mm$.

  • PDF

Economic Assessment on an Integrated system of Phosphoric Acid Fuel Cell and Organic Rankine Cycle (인산형 연료전지와 유기랭킨사이클 연계시스템에 대한 경제성 평가)

  • Kim, Deug Soo;Yoo, Hoseon
    • Plant Journal
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2022
  • In this study, the operational characteristics of the 7.48 MW fuel cell power plant consisting of 17 units of 440 kW Phosphoric Acid Fuel Cell (PAFC) in operation since its commercial operation in December 2017 were explained and the heat recovery process of the plat using Organic Rankine Cycle (ORC)was simulated. The fuel cell system performance improvement and economic assessment were analyzed by calculating the amount of heat recovery and electric power available when connecting a 125 kW XLT Model ORC for hot water heat sources with 105℃, 40.8 t/h. The result of the study shows that integrating the 125 kW ORC to PAFC power plant would improve generating efficiency by about 0.6% through annually 851,472 kWh of electricity produced by ORC, and fuel cell and ORC integrated systems were calculated to have a 0.35% higher Internal Return Ratio and more Net Present Value of 1,249 million KRW than not installing ORC despite installation costs.

  • PDF

Design of TE10 to TEM mode convertor for W-band radial power combiner (W밴드 radial 전력 결합기용 TE10-TEM 모드 변환기 설계)

  • Young-Gon Kim;Myung-Hun Yong;Han-Chun Ryu;Se-Hoon Kwon;Seon-Keol Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.41-46
    • /
    • 2023
  • Design of W-band TE10 to TEM mode converter for radial power combiner is proposed in this paper. The proposed structure is used with generally available pin to realize TEM mode and is designed to convert TE10 to TEM mode gradually using 2-step impedance transformer and back short. The pin of proposed mode converter is well bonded to the housing so that environment conditions such as vibration or shock are not affected. The proposed mode converter, in a back-to-back configuration, has less than 1.55 dB insertion loss and more than 10 dB return loss from 92.5 GHz to 97.7 GHz. Proposed converter is expected compact radar and various applications requiring for high power and stable environment conditions.

Development of a Returnable Folding Plastic Box RFID Module for Agricultural Logistics using Energy Harvesting Technology (에너지 하베스팅 기술을 활용한 농산물 물류용 리턴어블 접이식 플라스틱 상자 RFID 모듈 개발)

  • Jong-Min Park;Hyun-Mo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.223-228
    • /
    • 2023
  • Sustainable energy supplies without the recharging and replacement of the charge storage device have become increasingly important. Among various energy harvesters, the triboelectric nanogenerator (TENG) has attracted considerable attention due to its high instantaneous output power, broad selection of available materials, eco-friendly and inexpensive fabrication process, and various working modes customized for target applications. In this study, the amount of voltage and current generated was measured by applying the PSD profile random vibration test of the electronic vibration tester and ISTA 3A according to the time of Anodized Aluminum Oxide (AAO) pore widening of the manufactured TENG device Teflon and AAO. The discharge and charging tests of the integrated module during the random simulated transport environment and the recognition distance of RFID were measured while agricultural products (onion) were loaded into the returnable folding plastic box. As a result, it was found that AAO alumina etching processing time to maximize TENG performance was optimal at 31 min in terms of voltage and current generation, and the integrated module applied with the TENG module showed a charging effect even during the continuous use of RFID, so the voltage was kept constant without discharge. In addition, the RFID recognition distance of the integrated module was measured as a maximum of 1.4 m. Therefore, it was found that the surface condition of AAO, a TENG element, has a great influence on the power generation of the integrated module, and due to the characteristics of TENG, the power generation increases as the surface dries, so it is judged that the power generation can be increased if the surface drying treatment (ozone treatment, etc.) of AAO is applied in the future.

Evaluation of reactor pulse experiments

  • I. Svajger;D. Calic;A. Pungercic;A. Trkov;L. Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1165-1203
    • /
    • 2024
  • In the paper we validate theoretical models of the pulse against experimental data from the Jozef Stefan Institute TRIGA Mark II research reactor. Data from all pulse experiments since 1991 have been collected, analysed and are publicly available. This paper summarizes the validation study, which is focused on the comparison between experimental values, theoretical predictions (Fuchs-Hansen and Nordheim-Fuchs models) and calculation using computational program Improved Pulse Model. The results show that the theoretical models predicts higher maximum power but lower total released energy, full width at half maximum and the time when the maximum power is reached is shorter, compared to Improved Pulse Model. We evaluate the uncertainties in pulse physical parameters (maximum power, total released energy and full width at half maximum) due to uncertainties in reactor physical parameters (inserted reactivity, delayed neutron fraction, prompt neutron lifetime and effective temperature reactivity coefficient of fuel). It is found that taking into account overestimated correlation of reactor physical parameters does not significantly affect the estimated uncertainties of pulse physical parameters. The relative uncertainties of pulse physical parameters decrease with increasing inserted reactivity. If all reactor physical parameters feature an uncorrelated uncertainty of 10 % the estimated total uncertainty in peak pulse power at 3 $ inserted reactivity is 59 %, where significant contributions come from uncertainties in prompt neutron lifetime and effective temperature reactivity coefficient of fuel. In addition we analyse contribution of two physical mechanisms (Doppler broadening of resonances and neutron spectrum shift) that contribute to the temperature reactivity coefficient of fuel. The Doppler effect contributes around 30 %-15 % while the rest is due to the thermal spectrum hardening for a temperature range between 300 K and 800 K.

A Study on the Optimization of District Heating and Cooling Facilities (지역냉난방사업의 설비 최적화에 관한 연구)

  • Kim, Jin Hyung;Choi, Byung Ryeal
    • Environmental and Resource Economics Review
    • /
    • v.15 no.3
    • /
    • pp.505-530
    • /
    • 2006
  • For the district heating and cooling business, it is required to install energy-saving facilities using energy from waste and land fill gases such as combined heat and power(CHP). The current issues that this business faces can be summarized as below: which facilities including CHP can be economically introduced and how much of their capacities should be. Most of such issues are clearly related to the optimal plant design of the district heating and cooling business, and the prices of energy services such as heating and cooling energy, and electricity. The purpose of this study is to establish linear program model of least cost function and to practice the empirical test on a assumed district heating and cooling business area. The model could choose the optimal type of energy-producing facilities among various kinds available such as CHP's, absorption chillers, the ice-storage system, etc. CHP with the flexible heat and power ratio is also in the set of available technologies. And the model show us the optimal ration of heat producing facilities between CHP and historical heat only boiler in the service area. Some implications of this study are summarized as below. Firms may utilize this model as a tool for the analysis of their optimal size of the facilities and operation. Also, the government may refer the results to regulate resonable size of business.

  • PDF

Performance Analysis of a 3 Pressured Combined Cycle Power Plant (3압 복합 발전 플랜트 사이클에 대한 성능해석)

  • Kim, S. Y.;K. S. Oh;Park, B. C.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.74-82
    • /
    • 1998
  • Combined cycle power plant is a system where a gas turbine or a steam turbine is used to produce shaft power to drive a generator for producing electrical power and the steam from the HRSG is expanded in a steam turbine for additional shaft power. The temperature of the exhaust gases from a gas turbine ranges from $400{\sim}650^{\circ}C$, and can be used effectively in a heat recovery steam generator to produce steam. Combined cycle can be classed as a topping and bottoming cycle. The first cycle, to which most of the heat is supplied, is a Brayton gas turbine cycle. The wasted heat it produces is then utilized in a second process which operates at a lower temperature level is a steam turbine cycle. The combined gas and steam turbine power plant have been widely accepted because, first, each separate system has already proven themselves in power plants as an independent cycle, therefore, the development costs are low. Secondly, using the air as a working medium, the operation is relatively non- problematic and inexpensive and can be used in gas turbines at an elevated temperature level over $1000^{\circ}C$. The steam process uses water, which is likewise inexpensive and widely available, but better suited for the medium and low temperature ranges. It therefore, is quite reasonable to use the steam process for the bottoming cycle. Recently gas turbine attained inlet temperature that make it possible to design a highly efficient combined cycle. In the present study, performance analysis of a 3 pressured combined cycle power plant is carried out to investigate the influence of topping cycle to combined cycle performance. Present calculation is compared with acceptance performance test data from SeoInchon combined cycle power plant. Present results is expected to shed some light to design and manufacture 150~200MW class heavy duty gas turbine whose conceptual design is already being undertaken.

  • PDF

A study on the arrangement of integrated power system for warship (함정의 통합 전력시스템 구성에 관한 연구)

  • Baek, Hyun-Min;Jung, Kyun-Sik;Lee, Myung-Ho;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1070-1074
    • /
    • 2014
  • According to IEEE 1662(2009), IPS is a power system where all prime movers produce electrical power that is shared among propulsion, mission, and ship service loads. Discriminating attributes of integrated power systems are flexibility of movers' arrangements, mechanical decoupling between prime movers and propulsors, an increased level of energy conversion and transmission redundancy, and flexibility of redistributing available electrical power for future electronic weapons. IPS could have various steps of power that can be produced at optimal load of movers. In this study, an evaluation method for optimal arrangement of movers was investigated when an IPS warship is projected. The two factors are utilized for the quantitative analysis which are the weight of system as the fighting power and the fuel consumption per year as the economic feasibility. And also the ways for arrangement of system were studied according to existence of small diesel generator. The evaluation method that decides the optimization level is based on the DEA(Data Envelopment Analysis)