• Title/Summary/Keyword: available power

Search Result 1,805, Processing Time 0.027 seconds

Power-efficient Scheduling of Periodic Real-time Tasks on Lightly Loaded Multicore Processors (저부하 멀티코어 프로세서에서 주기적 실시간 작업들의 저전력 스케쥴링)

  • Lee, Wan-Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.8
    • /
    • pp.11-19
    • /
    • 2012
  • In this paper, we propose a power-efficient scheduling scheme for lightly loaded multicore processors which contain more processing cores than running tasks. The proposed scheme activates a portion of available cores and inactivates the other unused cores in order to save power consumption. The tasks are assigned to the activated cores based on a heuristic mechanism for fast task assignment. Each activated core executes its assigned tasks with the optimal clock frequency which minimizes the power consumption of the tasks while meeting their deadlines. Evaluation shows that the proposed scheme saves up to 78% power consumption of the previous method which activates as many processing cores as possible for the execution of the given tasks.

Design and Application of Harmonic Passive Filter (고조파 수동필터의 설계 및 적용)

  • Jeon, Jeong-Chay;Kim, Jae-Hyun;Yoo, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5397-5402
    • /
    • 2012
  • Accidents involving electric equipment and economical loss by power quality deterioration related to harmonics show a rising tendency A passive filter is economic and efficient in suppressing harmonics but many engineers and designers are reluctant to install a passive filter to defect harmonics at their power system because of problems such as harmonic amplification and the probability of generating series or parallel resonance with the power system. This work introduces that passive filters will be very available to defeat harmonic problems of the power system if passive filters are well designed. We describe method and process of harmonic passive filter design. And the passive filter for the power system having harmonic problems due to use of nonlinear loads like as 100HP DC motor system, an extruding machine, an air blower and other loads are designed. Experimental results verify the performance of the passive filter designed by the described method and procedure.

Design of an Energy Harvesting Circuit Using Solar and Vibration Energy with MPPT Control (MPPT 제어기능을 갖는 빛과 진동 에너지를 이용한 에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Hwang, In-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.224-234
    • /
    • 2012
  • This paper describes an energy harvesting circuit using solar and vibration energy with MPPT(Maximum Power Point Tracking) control for micro sensor nodes. The designed circuit employs MPPT control to harvest maximum power available from a PZT vibration element and an integrated solar cell. The harvested energies are simultaneously combined and stored in a storage capacitor, and then managed and transferred into sensor node by PMU(Power Management Unit). MPPT controls are implemented using the linear relationship between the open-circuit voltage of an energy transducer and its MPP(Maximum Power Point) voltage. The proposed circuit is designed in a CMOS 0.18um technology and its functionality has been verified through extensive simulations. The designed energy harvesting circuit and integrated solar cell occupy $2.85mm^2$ and $8mm^2$ respectively.

On discrete nonlinear self-tuning control

  • Mohler, R.-R.;Rajkumar, V.;Zakrzewski, R.-R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1659-1663
    • /
    • 1991
  • A new control design methodology is presented here which is based on a nonlinear time-series reference model. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible a.c. transmission system (FACTS) with series capacitor power feedback control is studied. A bilinear auto-regressive moving average (BARMA) reference model is identified from system data and the feedback control manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index (J). A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack. These applications are typical of the numerous plants for which nonlinear adaptive control has the potential to provide significant performance improvements. For aircraft control, significant maneuverability gains can provide safer transportation under large windshear disturbances as well as tactical advantages. For FACTS, there is the potential for significant increase in admissible electric power transmission over available transmission lines along with energy conservation. Electric power systems are inherently nonlinear for significant transient variations from synchronism such as may result for large fault disturbances. In such cases, traditional linear controllers may not stabilize the swing (in rotor angle) without inefficient energy wasting strategies to shed loads, etc. Fortunately, the advent of power electronics (e.g., high-speed thyristors) admits the possibility of adaptive control by means of FACTS. Line admittance manipulation seems to be an effective means to achieve stabilization and high efficiency for such FACTS. This results in parametric (or multiplicative) control of a highly nonlinear plant.

  • PDF

Efficient determination of the size of experiments by using graphs in balanced design of experiments (균형된 실험계획법에서 그래프를 활용한 실험의 크기의 효율적인 결정)

  • Lim, Yong B.;Youn, Sora;Chung, Jong Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.651-658
    • /
    • 2018
  • Purpose: The algorithm described in Lim(1998) is available to determine the sample size directly given specified significance level, power and signal-to-noise ratio. We research on the efficient determination of the sample size by visual methods. Methods: We propose three graphs for investigating the mutual relationship between the sample size r, power $1-{\beta}$ and the detectable signal-to-noise ratio ${\Delta}$. First graph shows the relationship between ${\Delta}$ and $1-{\beta}$ for the given r and it can be checked whether the power is sufficient enough. Second graph shows the relationship between r and ${\Delta}$ for the given power $1-{\beta}$. Third graph shows the relationship between r and $1-{\beta}$ for the given ${\Delta}$. It can be checked that which effects are sensitive to the efficient sample size by investigating those graphs. Results: In factorial design, randomized block design and the split plot design how to determine the sample size directly given specified significance level, power and signal-to-noise ratio is programmed by using R. A experiment to study the split plot design in Hicks(1982) is used as an example. We compare the sample sizes calculated by randomized block design with those by split plot design. By using graphs, we can check the possibility of reducing the sample size efficiently. Conclusion: The proposed visual methods can help an engineer to make a proper plan to reduce the sample size.

Glass Formulations for Vitrification of Low- and Intermediate-level Waste

  • Kim, Cheon-Woo;Park, Jong-Kil;Ha, Jong-Hyun;Song, Myung-Jae;Lee, Nel-Son;Kong, Peter-C.;Anderson, Gary-L.
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.936-942
    • /
    • 2003
  • In order to develop glass formulations for vitrifying Low-and Intermediate-Level radioactive Wastes (LILW) from nuclear power plants of Korea Hydro & Nuclear Power (KHNP) Co., Ltd., promising glass formulations were selected based on glass property model predictions for viscosity, electrical conductivity and leach resistance. Laboratory measurements were conducted to verify the model predictions. Based on the results, the models for electrical conductivity, US DOE 7-day Product Consistency Test (PCT) elemental release, and pH of PCT leachate are accurate for the LILW glass formulations. However, the model for viscosity was able to provide only qualitative results. A leachate conductivity test was conducted on several samples to estimate glass leach resistance. Test results from the leachate conductivity test were useful for comparison before PCT elemental release results were available. A glass formulation K11A meets all the KHNP glass property constraints, and use of this glass formulation on the pilot scale is recommended. Glass formulations K12A, K12B, and K12E meet nearly all of the processing constraints and may be suitable for additional testing. Based on the comparison between the measured and predicted glass properties, existing glass property models may be used to assist with the LILW glass formulation development.

DETECTION OF ODSCC IN SG TUBES DEPENDING ON THE SIZE OF THE CRACK AND ON THE PRESENCE OF SLUDGE DEPOSITS

  • Chung, Hansub;Kim, Hong-Deok;Kang, Yong-Seok;Lee, Jae-Gon;Nam, Minwoo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.869-874
    • /
    • 2014
  • It was discovered in a Korean PWR that an extensive number of very short and shallow cracks in the SG tubes were undetectable by eddy current in-service-inspection because of the masking effect of sludge deposits. Axial stress corrosion cracks at the outside diameter of the steam generator tubes near the line contacts with the tube support plates are the major concern among the six identical Korean nuclear power plants having CE-type steam generators with Alloy 600 high temperature mill annealed tubes, HU3&4 and HB3~6. The tubes in HB3&4 have a less susceptible microstructure so that the onset of ODSCC was substantially delayed compared to HU3&4 whose tubes are most susceptible to ODSCC among the six units. The numbers of cracks detected by the eddy current inspection jumped drastically after the steam generators of HB4 were chemically cleaned. The purpose of the chemical cleaning was to mitigate stress corrosion cracking by removing the heavy sludge deposit, since a corrosive environment is formed in the occluded region under the sludge deposit. SGCC also enhances the detection capability of the eddy current inspection at the same time. Measurement of the size of each crack using the motorized rotating pancake coil probe indicated that the cracks in HB4 were shorter and substantially shallower than the cracks in HU3&4. It is believed that the cracks were shorter and shallower because the microstructure of the tubes in HB4 is less susceptible to ODSCC. It was readily understood from the size distribution of the cracks and the quantitative information available on the probability of detection that most cracks in HB4 had been undetected until the steam generators were chemically cleaned.

Multi-Secondary Transformer: A Modeling Technique for Simulation - II

  • Patel, A.;Singh, N.P.;Gupta, L.N.;Raval, B.;Oza, K.;Thakar, A.;Parmar, D.;Dhola, H.;Dave, R.;Gupta, V.;Gajjar, S.;Patel, P.J.;Baruah, U.K.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.78-82
    • /
    • 2014
  • Power Transformers with more than one secondary winding are not uncommon in industrial applications. But new classes of applications where very large number of independent secondaries are used are becoming popular in controlled converters for medium and high voltage applications. Cascade H-bridge medium voltage drives and Pulse Step Modulation (PSM) based high voltage power supplies are such applications. Regulated high voltage power supplies (Fig. 1) with 35-100 kV, 5-10 MW output range with very fast dynamics (${\mu}S$ order) uses such transformers. Such power supplies are widely used in fusion research. Here series connection of isolated voltage sources with conventional switching semiconductor devices is achieved by large number of separate transformers or by single unit of multi-secondary transformer. Naturally, a transformer having numbers of secondary windings (~40) on single core is the preferred solution due to space and cost considerations. For design and simulation analysis of such a power supply, the model of a multi-secondary transformer poses special problem to any circuit analysis software as many simulation softwares provide transformer models with limited number (3-6) of secondary windings. Multi-Secondary transformer models with 3 different schemes are available. A comparison of test results from a practical Multi-secondary transformer with a simulation model using magnetic component is found to describe the behavior closer to observed test results. Earlier models assumed magnetising inductance in a linear loss less core model although in actual it is saturable core made-up of CRGO steel laminations. This article discusses a more detailed representation of flux coupled magnetic model with saturable core properties to simulate actual transformers very close to its observed parameters in test and actual usage.

Low-Power MPPT Interface for Vibration Energy Harvesting Sources (진동 에너지 하베스팅 자원을 위한 저전력 MPPT 인터페이스)

  • Song, Soo-Min;Kim, Hyun-Chul;Lee, Eun-Gyeong;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.39-42
    • /
    • 2018
  • In this paper, a low-power MPPT interface circuit for vibration energy harvesting sources is presented. The designed circuit rectifies the harvested ac type energy to the dc type energy required to drive the system, and periodically samples and holds the open circuit voltage (Voc) through the MPPT controller, and transfers the harvested power to the load while maintaining the input voltage at 1/2 of the maximum available power point. All circuits have been designed using a 0.35-um CMOS technology, and the operation has been verified through simulation. Simulation results show that the designed circuit consumes 98nA of current at 3V input voltage and the maximum power efficiency is 99.21%. The designed chip occupies $1.281mm{\times}1.236mm$.

  • PDF

A Simple Plane-Shaped Micro Stator Using Silicon Substrate Mold and Enamel Coil

  • Choi, Ju Chan;Choi, Young Chan;Jung, Dong Geun;Lee, Jae Yun;Min, Seong Ki;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.333-337
    • /
    • 2013
  • This study proposes a simply fabricated micro stator for higher output power than previously reported micro stators. The stator has been fabricated by inserting enamel coil in silicon mold formed by micro etching process. The most merits of the proposed micro stator are the simple fabrication process and high output power. Previously reported micro stators have high resistance because the micro coil is fabricated by relatively thin-film-based deposition process such as sputtering and electroplating. In addition, the previously reported micro coil has many electrical contact points for forming the coil structure. These characteristics of the micro stator can lead to low performance in output power. However, the proposed micro stator adopts commercially available enamel coil without any contact point. Therefore, the enamel coil of the proposed micro stator has low junction resistance due to the good electrical quality compared with the deposited or electroplated metal coil. Power generation tests were performed and the fabricated stator can produce 5.4 mW in 4000 RPM, $1{\Omega}$ and 0.3 mm gap. The proposed micro stator can produce larger output power than the previously reported stator spite of low RPM and the larger gap between the permanent magnet and the stator.