• Title/Summary/Keyword: auxiliary switching circuit

Search Result 243, Processing Time 0.023 seconds

Auxiliary resonant DC Link and power loss analysis of three phase voltage type inverter (보조 공진 DC 링크 스너버형 컨버터와 3상 전압형 인버터의 전력손실분석)

  • Kim, J.Y.;Mun, S.P.;Kim, Y.M.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1064-1066
    • /
    • 2002
  • This paper proposes a new prototype auxiliary resonant DC link(ARDCL)snubber circuit and deals with its power loss on the basis of actually measured conduction loss characteristic of switching device module. Voltage type soft switching three phase inverter using proposed ARDCL snubber circuit is presented along with its performance evaluations. And, the power loss analysis of three phase hard and soft switching inverter are carried out from the point of simulation and experimental results.

  • PDF

A New Partial Series Resonant DC/DC Converter with Zero-Voltage On/off Simultaneously (영전압 턴-온/오프 스위칭을 갖는 새로운 부분 직렬 공진형 DC/DC 컨버터)

  • Kim, Eui-Sung;Lee, Dong-Yun;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.358-360
    • /
    • 1999
  • This paper presents a new soft-switching partial series resonant DC/DC converter (PSRC) with zero-voltage on/off simultaneously, suitable for application in the high power and high frequency switching. The proposed converter has not only advantages of the conventional PSRC but also zero-voltage turn-on and turn-off of the main switches for the entire load ranges by adding the auxiliary circuit, and zero-voltage-switching (ZVS) turn-on of the auxiliary switches. The operation principles of the new converter are explained in detail and the several interesting simulation and experimental results verify the validity of the proposed circuit.

  • PDF

A Ringing Surge Clamper Type Active Auxiliary Edge-Resonant DC Link Snubber-Assisted Three-Phase Soft-Switching Inverter using IGBT-IPM for AC Servo Driver

  • Yoshitsugu, Junji;Yoshida, Masanobu;Hiraki, Eiji;Inoue, Kenji;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.115-124
    • /
    • 2002
  • This paper presents an active auxiliary edge-resonant DC link snubber with a ringing surge damper and a three-phase voltage source type zero voltage soft-switching inverter with the resonat snubber treated here for the AC servo motor driver applications. The operation of the active auxiliary edge-resonant DC link snubber circuit with PWM voltage is described, together with the practical design method to select its circuit parameters. The three-phase voltage source type soft-switching inverter with a single edge-resonant DC link snubber treated here is evaluated and discussed for the small-scale permanent magnet (PM) type-AC servo motor driver from an experimental point of view. In addition to these, the AC motor stator current and its motor speed response for the proposed three-phase soft-switching inverter employing Intelligent Power Module(IPM) based on IGBTS are compared with those of the conventional three-phase hard-switching inverter using IPM. The practical effectiveness of the three-phase soft-switching inverter-fed permanent magnet type AC motor speed tracking servo driver is proven on the basis of the common mode current in a novel type three-phase soft-switching inverter-fed AC motor side and the conductive noise on the mains terminal interface voltage as compared with those of the conventional three-phase hard-switching inverter-fed permanent magnet type AC servo motor driver for the speed tracking applications.

A Family of Zero Current and Zero Voltage Switching Bidirectional DC-DC Converter with Soft Switched Auxiliary Circuit (소프트 스위칭 방식의 보조 회로를 갖는 영전류 및 영전압 스위칭 양방향 DC-DC 컨버터)

  • Lee, Il-Ho;Kim, Jun-Gu;Kim, Jae-Hyung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.438-439
    • /
    • 2011
  • In this paper, soft switching bidirectional DC-DC converter is proposed. The proposed topology is added two auxiliary switches, two resonant capacitors and one resonant inductor to convectional bidirectional DC-DC converter. Therefore, this proposed topology can reduce switching loss of each power switch by ZVS (Zero Voltage Switching) and ZCS (Zero Current Switching). We have performed mode analysis, simulation and experiment for the proposed topology.

  • PDF

ZVZCS(Zero-Voltage and Zero-Current-Switching Three-Level DC/DC Converter reducing voltage stress of auxiliary circuit (보조 회로의 전압 스트레스를 저감한 ZVZCS Three-Level DC/DC 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Cho, Kyu-Man;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.172-174
    • /
    • 2005
  • A ZVZCS(Zero-Voltage and Zero-Current-Switching) Three-Level DC/DC Convertor reducing voltage stress of auxiliary circuit is proposed. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 2kW 40kHz IGBT based experimental circuit.

  • PDF

A Study on Soft Switching of Single-Stage PFC AC/DC Full Bridge Converter (Single-Stage PFC AC/DC Full Bridge Converter의 소프트 스위칭에 관한 연구)

  • 임경내;성병기;계문호;권순재;김철우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.401-404
    • /
    • 1998
  • This paper proposes a new soft switching single stage AC/DC full bridge converter with unit power factor and isolated output. This circuit shows that it is possible to combine the boost converter which is for PFC(Power Factor Correction) and full bridge converter which is for DC/DC converter. A simple auxiliary circuit which includes neither lossy components nor active switches eliminates ringing of secondary side of the transformer. The characteristics of the proposed circuit are investigated and the validity is verified by the simulation results.

  • PDF

Zero-Current-Switching in Full-Bridge DC-DC Converters Based on Activity Auxiliary Circuit

  • Chu, Enhui;Lu, Ping;Xu, Chang;Bao, Jianqun
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.353-362
    • /
    • 2019
  • To address the problem of circulating current loss in the traditional zero-current switching (ZCS) full-bridge (FB) DC/DC converter, a ZCS FB DC/DC converter topology and modulation strategy is proposed in this paper. The strategy can achieve ZCS turn on and zero-voltage and zero-current switching (ZVZCS) turn off for the primary switches and realize ZVZCS turn on and zero-voltage switching (ZVS) turn off for the auxiliary switches. Moreover, its resonant circuit power is small. Compared with the traditional phase shift full-bridge converter, the new converter decreases circulating current loss and does not increase the current stress of the primary switches and the voltage stress of the rectifier diodes. The diodes turn off naturally when the current decreases to zero. Thus, neither reverse recovery current nor loss on diodes occurs. In this paper, we analyzed the operating principle, steady-state characteristics and soft-switching conditions and range of the converter in detail. A 740 V/1 kW, 100 kHz experimental prototype was established, verifying the effectiveness of the converter through experimental results.

A Family of New Zero-Voltage-Transition PWM Converter with Zero-Current Turnoff Auxiliary Switch

  • Yang, Xu;Wang, Zhaoan
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.74-78
    • /
    • 1998
  • The shortcomings of zero-voltage-transition PWM converter is discussed and a new family of topologies of zero-voltage-transition PWM converter with soft-switched auxiliary switch is introduced. The experiments on a 290W boost converter and a 100W forward converter are carried out to prove the circuit. The efficiency increment of the new circuits are 2-5% comparing to hard switching circuits, and the switching noise is also greatly reduced.

  • PDF

Design of the High Efficiency Bidirectional Converter for DC Distributed Power System (직류 배전 시스템을 위한 고효율 양방향 컨버터의 설계)

  • Tran, Duc-Hung;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.5-6
    • /
    • 2016
  • This paper introduces a high efficiency bidirectional resonant converter using an additional LC auxiliary circuit for dcdistribution applications. The LC auxiliary circuit operates as a variable inductor and the additional LC circuit helps to increase the effective magnetizing inductance, thereby reducing the turn-off and primary circulating current. A 5 kW bidirectional converter for dc-distribution system is implemented to verify the validity of the proposed method. The experimental results show the high efficiency characteristics of the proposed converter over the wide range of load in both direction of power flow. The maximum efficiency of the proposed system was 98.1 % at 3 kW.

  • PDF

Three-Phase PWM Inverter and Rectifier with Two-Switch Auxiliary Resonant DC Link Snubber-Assisted

  • Nagai Shinichiro;Sato Shinji;Matsumoto Takayuki
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • In this paper, a new conceptual circuit configuration of a 3-phase voltage source, soft switching AC-DC-AC converter using an IGBT module, which has one ARCPL circuit and one ARDCL circuit, is presented. In actuality, the ARCPL circuit is applied in the 3-phase voltage source rectifier side, and the ARDCL circuit is in the inverter side. And more, each power semiconductor device has a novel clamp snubber circuit, which can save the power semiconductor device from voltage and current across each power device. The proposed soft switching circuits have only two active power semiconductor devices. These ARCPL and ARDCL circuits consist of fewer parts than the conventional soft switching circuit. Furthermore, the proposed 3-phase voltage source soft switching AC-DC-AC power conversion system needs no additional sensor for complete soft switching as compared with the conventional 3-phase voltage source AC-DC-AC power conversion system. In addition to this, these soft switching circuits operate only once in one sampling term. Therefore, the power conversion efficiency of the proposed AC-DC-AC converter system will get higher than a conventional soft switching converter system because of the reduced ARCPL and ARDCL circuit losses. The operation timing and terms for ARDCL and ARCPL circuits are calculated and controlled by the smoothing DC capacitor voltage and the output AC current. Using this control, the loss of the soft switching circuits are reduced owing to reduced resonant inductor current in ARCPL and ARDCL circuits as compared with the conventional controlled soft switching power conversion system. The operating performances of proposed soft switching AC-DC-AC converter treated here are evaluated on the basis of experimental results in a 50kVA setup in this paper. As a result of experiment on the 50kVA system, it was confirmed that the proposed circuit could reduce conduction noise below 10 MHz and improve the conversion efficiency from 88. 5% to 90.5%, when compared with the hard switching circuit.