• 제목/요약/키워드: auxiliary switching circuit

검색결과 243건 처리시간 0.022초

ARDCL을 이용한 3상 전압형 인버터의 손실에 관한 실험적 고찰 (The Experimental Consideration about Loss of Three-phase Voltage-fed Inverter using Auxiliary Resonant DC Link)

  • 서기영;문상필;김주용;이상현;박영조
    • 조명전기설비학회논문지
    • /
    • 제17권4호
    • /
    • pp.100-105
    • /
    • 2003
  • 본 논문은 새로운 보조 공진 DC 링크 스너버 회로를 제안하였으며, 실제적인 스위칭 소자 모듈의 유도 손실특성을 근거로 하여 전력손실의 저감에 대해 다루었다 보조 공진 DC 링크 스너버 회로를 이용하여 전압형 소프트 스위칭 3상 인버터의 회로정수값을 추종하였다. 그리고 실험과 시뮬레이션 결과에 의해서 3상 하드스위칭과 소프트스위칭 인버터의 전력 손실 해석을 하였다.

A New Dual-Active Soft-Switching Converter for an MTEM Electromagnetic Transmitter

  • Wang, Xuhong;Zhang, Yiming;Liu, Wei
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1454-1468
    • /
    • 2017
  • In this study, a new dual-active soft-switching converter is proposed to improve conversion efficiency and extend the load range for an MTEM electromagnetic transmitter in geological exploration. Unlike a conventional DC/DC converter, the proposed converter can operate in passive soft-switching, single-active soft-switching, or dual-active soft-switching modes depending on the change in load power. The main switches and lagging auxiliary switches of the converter can attain soft-switching over the entire load range. The conduction and switching losses are greatly reduced compared with those of ordinary converters under the action of the cut-off diodes and auxiliary windings coupled to the main transformer in the auxiliary circuits. The conversion efficiency of the proposed converter is significantly improved, especially under light-load conditions. First, the working principle of the proposed converter is analyzed in detail. Second, the relationship between the different operating modes and the load power is given and the design principle of the auxiliary circuit is presented. Finally, the Saber simulation and experimental results verify the feasibility and validity of the converter and a 50 kW prototype is implemented.

패시브 보조 공진 스너버를 이용한 소프트 스위칭 승압형 DC-DC 컨버터의 토폴로지 (The Topology of Soft Switching Boost Type DC-DC Converter using a Passive Auxiliary Resonant Snubber)

  • 성치호;박한석
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.146-152
    • /
    • 2015
  • In this paper, we propose a boost DC-DC converter using a modification of the passive auxiliary resonant snubber circuit with a DC-DC converter in a typical active auxiliary resonant snubber-bridge inverter. The proposed boost DC-DC converter is small compared to the DC-DC converter according to the soft-switching scheme that requires a general auxiliary switch by realizing the soft switching operation as a DC-DC converter which does not require an auxiliary switch. It is light-weight, switch the turn-on and turn-off switching loss at the time of the superposition of the voltage and current is extremely small, so small. And the reduction of the surge voltage and current of the switch. In addition, the proposed boost DC-DC converter has a high efficiency over a wide load characteristics change area than conventional hard switching PWM boost converter using an RC snubber loss.

Induction Heating PWM High Frequency Inverter using New Active Auxiliary Resonant Snubber

  • Mun, Sang-Pil;Kim, Chil-Ryong;Lee, Jong-Kurl;Kim, Hong-Sin;Jung, Sang-Hwa;Kwon, Soon-Kurl
    • 조명전기설비학회논문지
    • /
    • 제22권3호
    • /
    • pp.40-51
    • /
    • 2008
  • This research presents a new active auxiliary resonant snubber with for induction heating PWM high frequency inverter solving the problem of induction heating PWM high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the active auxiliary resonant snubber with for induction heating PWM high frequency inverter. The inverter circuit which is attempted by the on-off operation of a switch has the effect of reducing the power loss due to soft switching and high frequency switching. This confirms that power regulation is possible on a continuous basis from 0.25[kW] to 2.84[kW] where the duty factor(D) changes from 0.08 to 0.3 under zero current switching which operates by an asymmetrical pulse width modulating control. The power conversion efficiency is 95[%]. Due to these results, the active auxiliary resonant snubber for an induction heating PWM high frequency inverter is considered effective as a source of induction heating.

패시브 공진 스너버를 이용한 플라이백형 ZVS PWM DC-DC 컨버터의 특성해석 (Characteristic Analysis of Flyback Type ZVS PWM DC-DC Converter Using Passive Resonant Snubber)

  • 김정도;문상필;박한석
    • 전기학회논문지P
    • /
    • 제65권3호
    • /
    • pp.158-164
    • /
    • 2016
  • In this paper, a high frequency flyback type zero voltage soft switching PWM DC-DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of active power switches and a flyback high frequency transformer. In addition to these, passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three winding auxiliary high frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC-DC converter from an experimental point of view and the comparative electromagnetic conduction and radiation noise characteristics of both DC-DC power converter circuits are also depicted.

보조 스위치를 이용한 3상 ZCS 인버터에 관한 연구 (A Study on the Three Phase Inverter using Auxiliary Switches)

  • 배진용;김용;백수현;최근수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.155-158
    • /
    • 2004
  • This paper proposes a soft-transition control strategy for a three phase ZCS(Zero Current Switching) inverter circuit. Each phase leg of inverter circuit consists of an LC resonant tank, two main switches, and two auxiliary switches. This paper presents design consideration via a study example of a three phase prototype inverter for motor drives. A simple device tester with zero current switching capability is proposed to select eligible auxiliary switches. The principle of operation, feature and design consideration is illustrated and verified through the experiment with a 2.2kW 5kHz IGBT based experimental circuit.

  • PDF

새로운 ZVS 3-레벨 공진폴 인버터 (A Novel ZVS 3-Level Resonant Pole Inverter)

  • 백주원;조정구;유동욱;송두익;원충언
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.360-364
    • /
    • 1995
  • A zero voltage switching (ZVS) three level resonant pole inverter is presented for high power GTO inverters. The concept of auxiliary resonant commutated pole(ARCP) for two level inverter is extended to the three level inverter. The proposed auxiliary commutation circuit consists of one resonant inductor and two bi-directional switches, which provides ZVS condition to the main devices without increasing device voltage or current stresses. The auxiliary device operates with zero current switching(ZCS) which enables use of the low cost thyristors. The proposed circuit can handle higher voltage and higher power(1-10MVA) comparing to the two level one. Operation and analysis of the proposed circuit are illustrated. Experimental results with 10 KW, 4 kHz prototype are presented to verify the principle of operation.

  • PDF

A Novel Soft-Switching Full-Bridge PWM Converter with an Energy Recovery Circuit

  • Lee, Dong-Young;Cho, Bo-Hyung;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.809-821
    • /
    • 2009
  • This paper proposes a new phase-shift full-bridge DC-DC converter by applying energy recovery circuits to a conventional full-bridge DC-DC converter in plasma display panel applications. The converter can achieve soft-switching in main-switches by an extra auxiliary resonant network even with the wide operating condition of both output load and input voltage. The un-coupled design guidelines to the main bridge-leg component parameters for soft-switching operation contribute to conduction loss reduction in the transformer primary side leading to efficiency improvement. The auxiliary switches in the resonant network also operate in zero-current switching. This paper analyzes the operation modes of the proposed scheme and presents the key design guidelines through steady state analysis. Also, the paper verifies the validity of the circuits by hardware experiments with a 1kW DC/DC converter prototype.

단일 보조 스위치를 이용한 새로운 ZVZCS PWM DC-DC 컨버터 (New ZVZCS PWM DC-DC Converters with One Auxiliary Swithch)

  • 류승희;이동윤;유상봉;현동석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권3호
    • /
    • pp.188-194
    • /
    • 2000
  • This paper presents new Zero-Voltage-/Zero-Current-Switching (ZVZCS) PWM DC-DC converters. The proposed soft-switching technique achieves ZVS and ZCS simultaneously at both turn-on and turn-off of the main switch and diode by using only one auxiliary switch. Also, the proposed soft-switching technique is suitable for not only minority but also majority carrier semiconductor devices. The auxiliary circuit of the proposed topology is placed out the main power path and therefore, there are no voltage/current stresses on the main switch and diode. The operating principle of the proposed topology is illustrated by a detailed study with a boost converter as an example. Theoretical analysis, simulation and experimental results are presented to explain the proposed schemes.

  • PDF

Wide Band Gap 소자를 적용한 철도차량용 보조전원장치에 관한 연구 (A Study on the Auxiliary Power Supply for the Railway Vehicle by Using Wide Band Gap Device)

  • 최연우;이병희
    • 전력전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.168-173
    • /
    • 2018
  • In this paper, an auxiliary power supply (APS) for railroad cars is proposed. The APS can reduce the number of devices required to supply power through structural modification and operates at a high switching frequency by application of a SiC device. The voltage stress on the device in the proposed circuit can be reduced to less than half of the input voltage of the system; thus, a device with low breakdown voltage can be designed. By adapting a SiC device instead of an IGBT device, the proposed circuit can reduce switching and conduction losses and operate at a high switching frequency, thereby reducing output voltage and inductor current ripples in the proposed circuit. The theoretical analysis results of the proposed APS are verified with a 40 kW computer-based simulation and a 2 kW experiment.