• Title/Summary/Keyword: auxiliary circuit

Search Result 402, Processing Time 0.028 seconds

Single-Switch Buck Converter with a Ripple-Free Inductor Current

  • Do, Hyun-Lark
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.507-511
    • /
    • 2011
  • This paper presents a single-switch buck converter with a ripple-free inductor current. In the proposed converter, the filter inductor current ripple is completely removed by utilizing an auxiliary circuit consisting of an additional winding of the filter inductor, an auxiliary inductor, and an auxiliary capacitor. Moreover, the ripple-free current characteristic is maintained under both light load and full load conditions. The theoretical analysis and performance of the proposed converter were verified with a 110W experimental prototype operating at a 107 kHz switching frequency.

A Analysis of DC Control Circuit Transient and a Study of Auxiliary Relay Design Compatability in the Power Plant (발전소 직류 제어회로 과도현상 분석 및 보조계전기 선정 적합성 검토)

  • Seon, Hyun-Gyu;Hong, Young-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1948_1949
    • /
    • 2009
  • All the power generating station require dc auxiliary power systems to operate those dc components that must be available if a loss of ac power occur. Some examples of such components are auxiliary motors, circuit breakers, relays and solenoids. The dc source may be one common battery for both power and control or two separate batteries; one for power and another for control. Typically, a dc auxiliary power system is designed as an ungrounded system, instead of grounded system, so that a low-resistance ground fault on one of its two polarities will not affect the operation of the system, thus increasing system reliability and continuity of service. A ground detector should provide a high polarity-to-ground resistance so that a single ground fault occurring on the system will not affect the operation of that system. Sensitive relays have been known to energize momentarily while the cable and capacitive charge to ground shifts[1]. A power station had experienced this kind of incident and performed root cause analysis based on PC based simulation program known as PSpice. This simulation showed adapted relays on the system energize momentarily and design criteria on this relay should be corrected.

  • PDF

A Self-Driven Active Clamp Forward Converter Using the Auxiliary Winding of the Power Transformer (변압기 보조권선을 이용한 자기 구동 능동 클램프 포워드 컨버터)

  • 이광운;임범선;김희준
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.350-354
    • /
    • 2003
  • This study proposes a new self-driven active clamp forward converter eliminating the extra drive circuit for the active clamp switch. The converter used the auxiliary winding of the power transformer to drive the active clamp switch and a simple R-C circuit to get the dead time between the two switches. The operation principle was presented and experimental results were used to verify theoretical predictions. A 100-W (5V/20A) prototype converter built that only exhibited 1.5-turn winding number in the auxiliary winding was sufficient to drive the active clamp switch on the input of 50V. Finally, the measured efficiency of the converter was presented and the maximum efficiency of 91% was obtained.

Induction Heating PWM High Frequency Inverter using New Active Auxiliary Resonant Snubber

  • Mun, Sang-Pil;Kim, Chil-Ryong;Lee, Jong-Kurl;Kim, Hong-Sin;Jung, Sang-Hwa;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.40-51
    • /
    • 2008
  • This research presents a new active auxiliary resonant snubber with for induction heating PWM high frequency inverter solving the problem of induction heating PWM high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the active auxiliary resonant snubber with for induction heating PWM high frequency inverter. The inverter circuit which is attempted by the on-off operation of a switch has the effect of reducing the power loss due to soft switching and high frequency switching. This confirms that power regulation is possible on a continuous basis from 0.25[kW] to 2.84[kW] where the duty factor(D) changes from 0.08 to 0.3 under zero current switching which operates by an asymmetrical pulse width modulating control. The power conversion efficiency is 95[%]. Due to these results, the active auxiliary resonant snubber for an induction heating PWM high frequency inverter is considered effective as a source of induction heating.

Three-Phase Current Source Type ZVS-PWM Controlled PFC Rectifier with Single Active Auxiliary Resonant Snubber and Its Feasible Evaluations

  • Masayoshi Yamamoto;Shinji Sato;Tarek Ahmed;Eiji Hiraki;Lee, Hyun-Woo;Mutsuo Nakaoka
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.127-133
    • /
    • 2004
  • This paper presents a prototype of three-phase current source zero voltage soft-switching PWM controlled PFC rectifier with Single Active Auxiliary Resonant Commutated Snubber (ARCS) circuit topology. The proposed three-phase PFC rectifier with sinewave current shaping and unity power factor scheme can operate under a condition of Zero Voltage Soft Switching (ZVS) in the main three phase rectifier circuit and zero current soft switching (ZCS) in auxiliary snubber circuits. The operating principle and steady-state performances of the proposed three-phase current source soft-switching PWM controlled PFC rectifier controlled by the DSP control implementation are evaluated and discussed on the basis of the experimental results of this active rectifier setup.

Characteristic Analysis of Flyback Type ZVS PWM DC-DC Converter Using Passive Resonant Snubber (패시브 공진 스너버를 이용한 플라이백형 ZVS PWM DC-DC 컨버터의 특성해석)

  • Kim, Jung-Do;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.158-164
    • /
    • 2016
  • In this paper, a high frequency flyback type zero voltage soft switching PWM DC-DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of active power switches and a flyback high frequency transformer. In addition to these, passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three winding auxiliary high frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC-DC converter from an experimental point of view and the comparative electromagnetic conduction and radiation noise characteristics of both DC-DC power converter circuits are also depicted.

A Study on the Continuous Current Mode $S^4$-PFC Converter using Auxiliary Resonant Circuit (공진형 보조 회로를 이용한 연속 전류 모드 $S^4$-PFC 컨버터에 관한 연구)

  • Han, Dae-Hee;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Kwon, Soon-Do
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.200-203
    • /
    • 2002
  • This paper presents Continuous-current mode of $S^4$-PFC(Single-Stage Single-switch Power Factor Correction) converter. Proposed converter operates in the continueous current mode(CCM) at full load and discontinuous current mode(DCM) at light load. So, characteristic of proposed converter is no bus voltage stress and Zero Voltage Switching(ZVS) using resonant auxiliary circuit. And. This paper presents characteristic of $S^4$-PFC converter and effect of circuit parameter of proposed converter through the input inductor, PFC capacitor's variation. All of these theory and characteristic verified through the experiment with a 72W(12V, 6A), $90^{kHz}$ prototype converter.

  • PDF

Performance analysis and Design of self-excited Induction Generators considering output voltage (출력 특성을 고려한 단상 자기여자 유도 발전기의 특성 해석)

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Cho, Young-Rae;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.76-79
    • /
    • 2005
  • This paper describes the performance analysis and design of 1-phase self-excited induction generators. The minimum parallel capacitance of self-excited capacitor connected auxiliary winding and the series capacitance of regulating voltage capacitor connected main winding is proposed the suitable value using circuit equations of main and auxiliary winding. For the steady state analysis, the equivalent circuit of 1-phase induction generators is used as circuit modeling using the double-revolving field theory. The validity of designed generator system will be confirmed by experimental and computed results.

  • PDF

Performance analysis of 2-phase self-excited Induction Generator (2권선 자기 여자 유도 발전기의 특성 해석)

  • Kim Cherl-jin;Lee Kwan-young;Lee Yun-Jin;Baek Soo-Hyun;Han Kung-Hee
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.938-940
    • /
    • 2004
  • With increased emphasis on non-conventional energy system and autonomous power generation, development of improved and appropriate generating system has assumed signification. This paper describes the performance analysis of 2-phase self-excited induction generators. The minimum capacitance of self-excited capacitor connected auxiliary winding is determined the suitable value using circuit equations of auxiliary winding. For the steady state analysis, the equivalent circuit of 2-phase induction generators is used as circuit modeling using the double-revolving field theory. The validity of designed generator system will be confirmed by experimental and computed results.

  • PDF

ZVZCS(Zero-Voltage and Zero-Current-Switching Three-Level DC/DC Converter reducing voltage stress of auxiliary circuit (보조 회로의 전압 스트레스를 저감한 ZVZCS Three-Level DC/DC 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Cho, Kyu-Man;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.172-174
    • /
    • 2005
  • A ZVZCS(Zero-Voltage and Zero-Current-Switching) Three-Level DC/DC Convertor reducing voltage stress of auxiliary circuit is proposed. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 2kW 40kHz IGBT based experimental circuit.

  • PDF