• 제목/요약/키워드: autoregressive time-series model

검색결과 270건 처리시간 0.027초

Public Debt and Economic Growth Nexus in Malaysia: An ARDL Approach

  • YOONG, Foo Tzen;LATIP, Abdul Rahman Abdul;SANUSI, Nur Azura;KUSAIRI, Suhal
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권11호
    • /
    • pp.137-145
    • /
    • 2020
  • The aim of this study is to find out the time-series nexus of public debt and economic growth in Malaysia. For an upper-middle income country, Malaysia had experienced over 50% ratio of debt to GDP since 2009 until now. The question arises is whether this trend is healthy to the economy. With a focus into the debt-to-GDP ratio from 1970-2015, this study investigates the short-run and long-run relationship between public debt and economic growth in Malaysia. This study used secondary data by collecting time-series data (1970-2015) from the World Bank Data and Bank Negara Malaysia. Autoregressive Distributed Lag (ARDL) model is applied in this study to examine the relationship between debt and economic growth. Based on ARDL framework, it shows that there is a long-run effect between the debt and economic growth in Malaysia. While the significance value of Error Correction Term shows that there is a long-run adjustment in the short run. Generally, this study found government expenditures, in the long run, strongly influence the GDP per capita. Through the findings, the government expenditures could increase the GDP per capita. The study also reveals that any increment of the debt ratio will result in reduction of the GDP per capita.

신경망을 이용한 비정적 신호의 비선형 예측 (Nonlinear Prediction of Nonstationary Signals using Neural Networks)

  • 최한고;이호섭;김상희
    • 전자공학회논문지S
    • /
    • 제35S권10호
    • /
    • pp.166-174
    • /
    • 1998
  • 신경망은 분산된 비선형 처리구조와 학습능력 때문에 높은 차수의 비선형 동특성 구현능력을 갖고 있으므로 비정적 신호에 대한 적응예측을 수행할 수 있다. 본 논문에서는 두 가지 방법 (비선형 모듈구조와 비선형과 선형모듈이 직렬로 연결된 예측구조)으로 비정적 신호의 비선형 예측을 다루고 있다. 완전 궤환된 리커런트 신경망과 기존의 TDL(tapped-delay-line) 필터가 비선형과 선형모듈로 각각 사용되었다. 제안된 예측기의 동특성은 카오스 시계열과 음성신호에 대해 시험하였으며, 예측성능의 상대적인 비교를 위해 기존의 ARMA(autoregressive moving average) 구조의 선형 예측모델과 비교하였다. 실험결과에 의하면 신경망을 이용한 적응 예측기는 선형 예측기보다 예측성능이 훨씬 우수하였으며, 특히 직렬구조의 예측기는 신호가 크게 변화하는 시계열의 예측에 효과적으로 사용할 수 있음을 확인하였다.

  • PDF

The Effect of the Reduction in the Interest Rate Due to COVID-19 on the Transaction Prices and the Rental Prices of the House

  • KIM, Ju-Hwan;LEE, Sang-Ho
    • 산경연구논집
    • /
    • 제11권8호
    • /
    • pp.31-38
    • /
    • 2020
  • Purpose: This study uses 'Autoregressive Integrated Moving Average Model' to predict the impact of a sharp drop in the base rate due to COVID-19 at the present time when government policies for stabilizing house prices are in progress. The purpose of this study is to predict implications for the direction of the government's house policy by predicting changes in house transaction prices and house rental prices after a sharp cut in the base rate. Research design, data, and methodology: The ARIMA intervention model can build a model without additional information with just one time series. Therefore, it is a time-series analysis method frequently used for short-term prediction. After the subprime mortgage, which had shocked since the global financial crisis in April 2007, the bank's interest rate in 2020 is set at a time point close to zero at 0.75%. After that, the model was estimated using the interest rate fluctuations for the Bank of Korea base interest rate, the house transaction price index, and the house rental price index as event variables. Results: In predicting the change in house transaction price due to interest rate intervention, the house transaction price index due to the fall in interest rates was predicted to change after 3 months. As a result, it was 102.47 in April 2020, 102.87 in May 2020, and 103.21 in June 2020. It was expected to rise in the short term. In forecasting the change in house rental price due to interest rate intervention, the house rental price index due to the drop in interest rate was predicted to change after 3 months. As a result, it was 97.76 in April 2020, 97.85 in May 2020, and 97.97 in June 2020. It was expected to rise in the short term. Conclusions: If low interest rates continue to stimulate the contracted economy caused by COVID-19, it seems that there is ample room for house transaction and rental prices to rise amid low growth. Therefore, In order to stabilize the house price due to the low interest rate situation, it is considered that additional measures are needed to suppress speculative demand.

우선주-보통주 괴리율이 우선주 수익률 및 종가에 미치는 영향: 동태적 패널 분석 (The Effects of the Price Difference Ratios between Preferred and Common Stocks on Preferred Stocks: Evidence from Dynamic Panel Models)

  • 최수정
    • 아태비즈니스연구
    • /
    • 제15권2호
    • /
    • pp.207-222
    • /
    • 2024
  • Purpose - This study investigates whether the lagged price difference ratio between preferred and common stocks is related to the return and closing price of the preferred stock using three panel models. Design/methodology/approach - As a first step, we use a two-way fixed effect panel model with stationary preferred stock returns as a dependent variable. For robustness, we then apply the autoregressive distributed lag model (ARDL) and error correction model (ECM) with nonstationary closing prices of the preferred stocks as a dependent variable and compare the results of each model. The ARDL and ECM models provide an advantage of estimating a long-run equilibrium equation together if a long-run relationship exists between the two time-series variables compared to the fixed effect model. Findings - Our sample consists of 107 preferred stocks with at least four years of daily observations as of the end of December 2023. The coefficients of the error correction terms in the ARDL and ECM models are highly statistically significant, approximately -0.08. This indicates that the disequilibrium between the closing prices of common and preferred stocks adjusts by about 8% per day toward equilibrium. In all three models, the price difference ratio on day t-1 was statistically significant in explaining the preferred stock returns or closing prices on day t, implying that trading based on the previous day's price difference ratio is effective for one day. Research implications or Originality - Furthermore, the returns on preferred stocks are higher for firms with a lower proportion of foreign investors or a lower foreign market capitalization of preferred stocks. This suggests that foreign investors with informational advantages do not actively engage in profit-taking by trading preferred stocks, thus not narrowing the price difference. In summary, the recent surge in preferred stock prices is likely driven mainly by the irrational behavior of retail investors.

토사터널의 쉴드 TBM 데이터 시계열 분석을 통한 막장 전방 예측 연구 (A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel)

  • 정지희;김병규;정희영;김해만;이인모
    • 한국터널지하공간학회 논문집
    • /
    • 제21권2호
    • /
    • pp.227-242
    • /
    • 2019
  • 토압식(Earth Pressure-Balanced, EPB) 쉴드 TBM 기계데이터 분석을 통해 토사터널의 특징이 반영된 막장 전방 예측 방법을 제안하였다. 기존에 암반과 토사가 혼합된 복합 지반의 예측에 적용하였던 시계열 분석 모델을 토사터널에 적용가능하도록 수정하였다. 또한 수정된 모델을 사용하여, 토사 종류에 따라 쏘일 컨디셔닝 재료를 선택하는 것이 타당한지 연구하였다. 이를 위해 Self-Organizing Map (SOM) 군집화(clustering) 분석을 수행하였다. 그 결과 무엇보다도 지반타입이 #200체 통과량 35% 기준으로 분류되어야 한다는 것을 확인하였다. 또한 TBM 기계데이터 분석을 통해 수정된 모델이 지반 타입을 예측하는데 사용될 수 있음을 확인하였다. 수정된 기준에 따라 지반 타입을 분류하고 시계열 분석을 수행하면, 10막장 전방 지반에 대해서 98%의 높은 예측 정확도를 보였으며, 이를 통해 수정된 방법의 우수성이 입증되었다. 특히 지반 타입 변화 구간에 대한 예측 정확도도 약 93%로, 10막장 전방에서 지반 타입 변화 여부를 미리 확인할 수 있게 되었다.

뇌기능 연결성 모델링을 위한 통계적 방법 (Statistical methods for modelling functional neuro-connectivity)

  • 김성호;박창현
    • 응용통계연구
    • /
    • 제29권6호
    • /
    • pp.1129-1145
    • /
    • 2016
  • 뇌기능 연결성 문제는 뇌의 신경역학적 현상과 밀접한 관련이 있다는 의미에서 뇌과학에서 주요 연구주제이다. 본 논문에서는 기능적 자기공명영상(fMRI)자료를 뇌활동에 대한 반응 자료의 주요 형태로써 선택하였는데, 이 fMRI자료는 높은 해상도 때문에 뇌과학 연구에서 선호되는 자료 형태이다. 뇌활동에 대한 생리학적 반응을 측정해서 자료로 사용한다는 전제하에서 뇌의 기능적 연결성을 분석하는 방법들을 고찰하였다. 여기서의 전제란 상태공간 및 측정 모형을 다룬다는것을 의미하는데, 여기서 상태공간 모형은 뇌신경역학을 표현한다고 가정한다. 뇌기능 영상자료의 분석은 무엇을 측정하였느냐에 따라서 분석방법과 그 해석이 조금씩 달라진다. 실제 fMRI자료를 고차원 자기회귀모형을 적용해서 분석한 결과를 논문에 포함하였는데, 이 결과를 통해서 서로 다른 도형문제를 푸는데 서로 다른 뇌신경 역학관계가 요구된다는 것을 엿볼 수 있었다.

The Effects of Foreign Direct Investment and Economic Absorptive Capabilities on the Economic Growth of the Lao People's Democratic Republic

  • NANTHARATH, Phouthakannha;KANG, Eungoo
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제6권3호
    • /
    • pp.151-162
    • /
    • 2019
  • The paper examines the effects of Foreign Direct Investment (FDI) on the economic growth of Lao People's Democratic Republic (Lao PDR) between 1993 and 2015. The investigation is based on the influence of growth and economic absorptive capability determinants such as human capital, trade openness, and institutional quality. The methodological analysis uses a multivariate framework accounting capital stock, labor stock, FDI, human capital, trade openness, and institutional quality in regression of the Vector Autoregressive model. Augmented Dickey-Fuller unit root test, Johansen Cointegration test, and Granger Causality test were applied as parts of the econometric time-series analysis approach. The empirical results demonstrate the positive effects of FDI and trade openness, and the negative effects of human capital and institutional quality on the economic growth of the Lao PDR over the 1993 to 2015 period. The findings confirm that trade openness complemented by a sufficient level of infrastructure, education, quality institutions, and transparency significantly influence economic growth and attract more FDI. Research results lend credence to the need for the Lao PDR's government to focus on improving its economic absorptive capability and economic competitiveness regionally and globally by improving wealth and resource management strategies, as failure to take this course of action could lead to the Dutch Disease effects.

주택매매가격 및 전세가격 변화에 따른 전세/매매가격비율 변동 분석 (Analyzing Fluctuation of the Rent-Transaction price ratio under the Influence of the Housing Transaction, Jeonse Rental price)

  • 박재현;이상효;김재준
    • 한국디지털건축인테리어학회논문집
    • /
    • 제10권2호
    • /
    • pp.13-20
    • /
    • 2010
  • Uncertainty in housing price fluctuation has great impact on the overall economy due to importance of housing market as both place of residence and investment target. Therefore, estimating housing market condition is a highly important task in terms of setting national policy. Primary indicator of the housing market is a ratio between rent and transaction price of housing. The research explores dynamic relationships between Rent-Transaction price ratio, housing transaction price and jeonse rental price, using Vector Autoregressive Model, in order to demonstrate significance of shifting rent-transaction price that is subject to changes in housing transaction and housing rental market. The research applied housing transaction price index and housing rental price index as an indicator to measure transaction and rental price of housing. The price index and data for price ratio was derived from statistical data of the Kookmin Bank. The time-series data contains monthly data ranging between January 1999 and November 2009; the data was log transformed to convert to level variable. The analysis result suggests that the rising ratio between rent-transaction price of housing should be interpreted as a precursor for rise of housing transaction price, rather than judging as a mere indicator of a current trend.

Carbon dioxide emissions, GDP per capita, industrialization and population: An evidence from Rwanda

  • Asumadu-Sarkodie, Samuel;Owusu, Phebe Asantewaa
    • Environmental Engineering Research
    • /
    • 제22권1호
    • /
    • pp.116-124
    • /
    • 2017
  • The study makes an attempt to investigate the causal nexus between carbon dioxide emissions, GDP per capita, industrialization and population with an evidence from Rwanda by employing a time series data spanning from 1965 to 2011 using the autoregressive distributed lag model. Evidence from the study shows that carbon dioxide emissions, GDP per capita, industrialization and population are co-integrated and have a long-run equilibrium relationship. Evidence from the Granger-causality shows a unidirectional causality running from industrialization to GDP per capita, population to carbon dioxide emissions, population to GDP per capita and population to industrialization. Evidence from the long-run elasticities has policy implications for Rwanda; a 1% increase in GDP per capita will decrease carbon dioxide emissions by 1.45%, while a 1% increase in industrialization will increase carbon dioxide emissions by 1.64% in the long-run. Increasing economic growth in Rwanda will therefore reduce environmental pollution in the long-run which appears to support the validity of the environmental Kuznets curve hypothesis. However, industrialization leads to more emissions of carbon dioxide, which reduces environment, health and air quality. It is noteworthy that the Rwandan Government promotes sustainable industrialization, which improves the use of clean and environmentally sound raw materials, industrial process and technologies.

A Study on the Dynamic Relationship between Education Input and Economic Growth

  • He, Yugang
    • 동아시아경상학회지
    • /
    • 제6권4호
    • /
    • pp.35-45
    • /
    • 2018
  • Purpose - The operating mechanism between education input and economic growth is a mysterious proposition that has attracted a vast array of scholars' interests to study on it. Therefore, this paper sets China as an example to analyze the dynamic relationship between education input and economic growth. Research design and methodology - The annual time series from 1990 to 2017 will be employed to conduct an empirical analysis under the vector autoregressive model. The education input is treated as an factor that impacts the economic growth such as labor input and capital input. Meanwhile, the education input will be added to the Cobb-Douglas production function to form a new one so as to explore the dynamic relationship between education input and economic growth. Results - According to the results of empirical analysis, it can be found that the education input has an increasingly positive effect on economic growth. Simultaneously, the economic growth also has a positive effect on education input, but this kind of effect is not steady. Of course, the labor input and the capital input also can promote the economic growth to some degree. Conclusions - The education input is one of most important inputs for a country. Based on the empirical analysis, this paper suggests that the China's government should put more emphasis on the education input so to make its economy develop well.