KSII Transactions on Internet and Information Systems (TIIS)
/
제13권4호
/
pp.2060-2077
/
2019
Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.
학계와 금융파생상품 가격결정이나 변동성매매와 같은 실무영역 모두에서 주식시장의 변동성은 중요한 역할을 한다. 본 연구는 GARCH 모형에 기초하여 한국주식시장의 변동성을 정확히 예측함으로써 변동성매매시스템의 성과를 높일 수 있는 새로운 방법을 제시하였다. 특히, 여러 연구 자료에서 밝혀지고 있는 변동성 비대칭성개념을 도입하였다. 최근 새로 개발된 한국주식시장 변동성 지수인 VKOSPI를 변동성 대용값으로 사용한다. VKOSPI는 KOSPI 200 지수옵션의 가격을 이용하여 계산된 값으로서 옵션딜러들의 변동성 예측치를 반영하고 있다. KOSPI 200 옵션시장은 1997년 시작되었으며, 발전을 거듭하여 현재 하루 거래량이 1,000만 계약을 넘어서면서 세계 최고의 지수옵션시장으로 발전하였다. 이러한 옵션시장에 반영된 변동성을 분석하는 것은 투자자들에게 좋은 투자정보를 제공하게 될 것이다. 특히, 변동성 대용값으로 VKOSPI를 사용하면 다른 변동성 대용치를 사용할 때 발생하는 통계적 추정의 문제를 피해 갈 수 있다. 본 연구는 2003년부터 2006년의 KOSPI 200 지수 일별자료를 대상으로 최우도추정방법(MLE)을 이용하여 GARCH 모형을 추정한다. 비대칭 GARCH 모형으로는 Glosten, Jagannathan, Runke의 GJR-GARCH 모형, Nelson의 EGARCH 모형, 그리고 Ding, Granger, Engle의 PARCH모형을 포함하며 대칭 GARCH 모형은 (1, 1) GARCH 모형을 이용한다. 2007년부터 2009년까지의 KOSPI 200 지수 일별자료를 대상으로 반복적 계산과정을 통해 내일의 변동성 예측값과 오르고 내리는 변화방향을 예측하였다. 분석 결과 시장변동성과 예기치 않은 주가변동 사이에는 음의 상관관계가 존재하며, 음의 주가변동은 동일한 크기의 양의 주가변동보다 훨씬 더 큰 변동성의 증가를 가져옴을 알 수 있다. 즉, 한국 주식시장에도 변동성 비대칭성이 존재함을 보여주었다. GARCH 모형을 이용하여 내일의 VKOSPI의 등락방향을 예측하고 이를 이용하여 변동성 매매시스템을 개발하였다. 내일의 변동성이 상승할 것으로 예측되면 스트래들매수전략을 이용하고 반대로 변동성이 하락할 것으로 예측되면 스트래들 매도전략을 이용한다. 변동성의 변화방향성을 맞춘 경우에는 VKOSPI 변동분을 더하고 틀린 경우에는 변동분을 뺀 누적합을 이용하여 변동성매매전략의 총수익을 계산한다. 모형추정용 자료구간의 경우 통계적 기준인 MSPE 기준으로는 PARCH 모형의 적합도가 가장 높고, 예측방향의 적중도를 재는 MCP 기준으로는 EGARCH 모형이 가장 높은 값을 보여주었다. 테스트용 자료구간의 경우에는 PARCH 모형이 모형적합도와 내일의 변동성 등락방향 예측에서 가장 좋은 결과를 보여주었다. 모형추정용 자료구간의 경우 GARCH 모형 전체에서 매매이익을 기록하고 있고 테스트용 자료구간의 경우에는 EGARCH 모형을 제외한 GARCH 모형들이 매매이익을 보여주었다. 본 연구에서 나타난 변동성의 군집과 비대칭성 현상으로부터 변동성에 비선형성이 존재함을 알 수 있었으며, 비선형성에서 좋은 결과를 보이고 있는 인공지능시스템과 비대칭 GARCH 모형을 결합한다면 제안된 변동성매매시스템의 성과를 많이 개선할 수 있을 것으로 판단된다.
본 연구는 2000년 1월부터 2023년 12월까지의 대내외 경제 정책 불확실성(EPU) 자료를 이용하여 미국, 중국, 유럽, 일본과 대한민국 간의 불확실성 연계성 지수를 추정하였다. 이를 통해 대외 경제 불확실성이 우리나라 경제 불확실성에 미치는 영향을 분석하였다. 실증분석을 위해 경제정책 불확실성 지수를 경제 불확실성의 대리변수로 사용하였으며, 예측오차 분산분해로부터 연계성 지수를 계산하였다. 실증분석 결과, 불확실성의 예측오차 분산에서 3/4는 우리나라 내 경제 불확실성에서 비롯되고 나머지 1/4는 대외 경제 불확실성에서 비롯된다는 것을 알 수 있었다. 순쌍별 연계성 지수에 대한 분석 결과, 경제 불확실성이 다른 국가의 경제 불확실성에 미치는 영향의 정도는 시간에 따라 변화하지만, 소규모 개방경제인 우리나라는 주로 다른 나라로부터 경제 불확실성의 영향을 받는다는 것을 알 수 있었다. 실증분석 결과, 불확실성의 예측오차 분산에서 여타 변수의 충격에 의해 설명되는 비중, 즉 총 연계성은 1/4 가량으로 추정되었다. 또한, 우리나라의 경제 불확실성은 대외 경제 불확실성으로부터 크게 영향을 받지만, 우리나라가 다른 국가의 불확실성에는 큰 영향을 주지 못한다는 것을 알 수 있었다. 그러나 시간에 따라 불확실성을 주고 받는 관계가 변화하는 것으로 분석되었다. 우리나라는 주로 다른 국가로부터 불확실성을 받는 관계이지만, 2003년 카드대란, 2018년 남북정상회담 개최, COVID-19에 대한 엄격한 규제 등에 의해 불확실성이 크게 확대되었을 때에는 다른 국가에게 불확실성을 주는 관계가 될 수도 있다는 것을 알 수 있었다.
본 연구는 시공간분석을 이용하여 주요 만성질환인 고혈압, 당뇨병, 관절증과 총의료이용에 있어 지역별 외래의료이용 차이를 살펴보았다. 분석자료는 보건복지부와 한국보건사회연구원에서 발간하는 1996, 1999, 2002, 2005, 2008년 환자조사 자료를 이용하였으며 분석방법으로는 베이지안 계층적 시공간모형(bayesian hierarchial spatio-temporal model)을 이용하였다. 이때 지역의 공간적 상관성은 convolution CAR 모형을, 시간적 상관성은 Ornstein-Uhlenbeck 방법을 적용하여 분석하였다. 분석결과 질환별로 의료이용에 있어 지역적 차이가 존재하였다. 총의료 이용의 경우 시 군지역보다 대도시인 구지역에서 높은 상대위험비를 보인반면, 만성질환인 고혈압, 당뇨병, 관절증은 총의료이용과는 달리 강원도, 충청남북도, 전라남북도, 제주도 등 농어촌 지역에서 전국평균보다 높은 의료이용(상대위험비)을 보였다. 특히 고혈압은 부산경남 해안가 지역과 강원, 경기, 경북, 충청남도, 전북 등에서 높은 의료이용을 보였고, 관절증은 경기, 강원 일부와 충북, 충남, 전북, 전남, 경북, 경남지역 등에서, 당뇨병은 경기, 서울, 부산, 전라남북, 충청일부 지역에서 상대적으로 높은 의료이용을 보였다. 본 연구는 기존 연구와는 달리 공간적, 시간적 상관성을 고려함으로써 지역단위 분석시 공간적, 시간적 상관성을 고려하지 않음으로써 발생하는 통계적 오류를 최소화하였다.
본 연구의 목적은 아동 건강에 미치는 환경의 영향을 평가하기 위하여 우리나라 환경부에서 구축한 경시적 자료인 CHEER 자료를 바탕으로 납의 벤치마크 용량 하한(BMDL)을 도출하여 Kim 등 (2014)의 결과를 재현하는 것이다. 본 연구에서는 CHEER 자료의 2005년 동집단을 사용하였는데, 벌점화 선형 스플라인을 이용한 변환공식으로 2005년 동집단의 ADHD 평가 척도를 통일하고, 경시적 자료의 특성을 반영한 두 개의 선형혼합모형을 구축하였다. 이후 구축된 모형을 바탕으로 혈중 납 농도의 BMDL을 도출하였다. 이 과정에서 Kim 등 (2014)에서 발견한 ADHD 점수의 평균으로의 회귀 현상이 재확인되었고, 2005년 동집단과 2006년 동집단의 분포 상의 특징적 차이가 발견되었다. 결과적으로 이 차이를 감안했을 때, Kim 등 (2014)과 일치적인 결과를 얻을 수 있었다.
Purpose - This study examines the impact of oil price volatility on economic activities in Korea. The new millennium has seen a deregulation in the crude oil market, which invited immense capital inflow into Korea. It has also raised oil price levels and volatility. Drawing on the recent theoretical literature that emphasizes the role of volatility, this paper attends to the asymmetric changes in economic growth in response to the oil price movement. This study further examines several key macroeconomic variables, such as interest rate, production, and inflation. We come to the conclusion that oil price volatility can, in some part, explain the structural changes. Research design, data, and methodology - We use two methodological frameworks in this study. First, in regards to the oil price uncertainty, we use an Exponential-GARCH (Exponential Generalized Autoregressive Conditional Heteroskedasticity: EGARCH) model estimate to elucidate the asymmetric effect of oil price shock on the conditional oil price volatility. Second, along with the estimation of the conditional volatility by the EGARCH model, we use the estimates in a VECM (Vector Error Correction Model). The study thus examines the dynamic impacts of oil price volatility on industrial production, price levels, and monetary policy responses. We also approximate the monetary policy function by the yield of monetary stabilization bond. The data collected for the study ranges from 1990: M1 to 2013: M7. In the VECM analysis section, the time span is split into two sub-periods; one from 1990 to 1999, and another from 2000 to 2013, due to the U.S. CFTC (Commodity Futures Trading Commission) deregulation on the crude oil futures that became effective in 2000. This paper intends to probe the relationship between oil price uncertainty and macroeconomic variables since the structural change in the oil market became effective. Results and Conclusions - The dynamic impulse response functions obtained from the VECM show a prolonged dampening effect of oil price volatility shock on the industrial production across all sub-periods. We also find that inflation measured by CPI rises by one standard deviation shock in response to oil price uncertainty, and lasts for the ensuing period. In addition, the impulse response functions allude that South Korea practices an expansionary monetary policy in response to oil price shocks, which stems from oil price uncertainty. Moreover, a comparison of the results of the dynamic impulse response functions from the two sub-periods suggests that the dynamic relationships have strengthened since 2000. Specifically, the results are most drastic in terms of industrial production; the impact of oil price volatility shocks has more than doubled from the year 2000 onwards. These results again indicate that the relationships between crude oil price uncertainty and Korean macroeconomic activities have been strengthened since the year2000, which resulted in a structural change in the crude oil market due to the deregulation of the crude oil futures.
이 연구는 건축허가면적의 변화가 임산물수입량에 마치는 영향을 우리나라 시장을 대상으로 분석하였다. 첫번째 목적은 건축허가면적의 변화가 임산물수입량 변화의 원인이 되는지, 즉 인과관계를 파악하는 것이고, 두번째 목적은 건축허가면적의 변화가 임산물수입량에 얼마만큼 얼마동안 영향을 미치는지, 즉 동태적 영향을 추정하는 것이다. 건축허가면적과 임산물수입량의 관계는 자기회귀모형이나 오차수정모형에 의해 만들어졌다. 인과관계 파악은 Granger가 고안한 인과성검정을 이용하였고, 동태분석은 분산분해분석과 충격반응분석을 이용하였다. 결과에 의하면 건축허가면적의 변화는 임산물 중에서 고밀도섬유판수입량 변화의 원인이 되었다. 고밀도섬유판의 경우에 어느 시기의 수입량은 그 시기 이전의 건축허가면적에 의해 10%, 그 시기 이전의 수입량에 의해 90% 가량 설명되었다. 또한 건축허가면적의 변화는 고밀도섬유판수입량에 6개월까지 영향을 미쳤다. 즉 건축허가면적의 변화가 고밀도섬유판수입량에 영향을 미쳤더라도 단기간에 불과했다.
이 연구의 목적은 시계열 분석을 통하여 최근 10년(2010 - 2019)간의 광주광역시 출생아 수 추이와 전남대학교 치과병원 소아치과 내원 환자 수 추이를 분석하고 향후 1년을 예측하는 것이다. 출생아 수는 월별 반복과정을 보이면서 비안정적으로 하락하는 추세를 보였으며 1월에 출생아 수가 가장 많고 12월에 가장 적은 경향을 보였다. 2020년의 출생아 수가 평균 682명(595 - 782명, 95% CI)으로 예측되었으며 실제 출생아 수는 평균 610명이었다. 소아치과 내원 환자 수는 월별 반복과정을 보이면서 비교적 안정되어 있으며 8월에 내원 환자 수가 가장 많고 6월에 가장 적은 경향을 보였다. 2020년의 내원 환자 수가 평균 603명(505 - 701명, 95% CI)으로 예측되었으며 실제 내원 환자 수의 평균은 587명이었다. 출생아 수의 기록적인 감소에도 불구하고 소아치과에 내원한 환자의 수는 다소 증가할 것으로 예측되었다. COVID-19이라는 특수한 상황으로 인하여 실제 출생아 수와 내원 환자수가 예측치보다 다소 낮게 확인되었으나 예측 범위 내에 포함됨을 확인하였다. 시계열 분석 모형은 과거를 이해하고 미래를 예측하는 유용한 방법으로 소아치과 영역에서 저출산 시대를 대비하기 위한 기초 도구로써 유용하게 활용될 수 있을 것이다.
본 논문은 학습데이터의 크기에 따른 사례기반추론기법이 주가예측력에 어떻게 영향을 미치는지 살펴본다. 삼성전자 주가를 대상을 학습데이터를 2000년부터 2017년까지 이용한 경우와 2015년부터 2017년까지 이용한 경우를 비교하였다. 테스트데이터는 두 경우 모두 2018년 1월 1일부터 2018년 8월 31일까지 이용하였다. 시계 열데이터의 경우 과거데이터가 얼마나 유용한지 살펴보는 측면과 유사사례개수의 중요성을 살펴보는 측면에서 연구를 진행하였다. 실험결과 학습데이터가 많은 경우가 그렇지 않은 경우보다 예측력이 높았다. MAPE을 기준으로 비교할 때, 학습데이터가 적은 경우, 유사사례 개수와 상관없이 k-NN이 랜덤워크모델에 비해 좋은 결과를 보여주지 못했다. 그러나 학습데이터가 많은 경우, 일반적으로 k-NN의 예측력이 랜덤워크모델에 비해 좋은 결과를 보여주었다. k-NN을 비롯한 다른 데이터마이닝 방법론들이 주가 예측력 제고를 위해 학습데이터의 크기를 증가시키는 것 이외에, 거시경제변수를 고려한 기간유사사례를 찾아 적용하는 것을 제안한다.
본 연구는 새로운 정보에 대하여 국채선도금리시장(forward market)과 국채 현물시장(spot market) 중 어느 시장이 더 효율적으로 반응하는지에 관한 분석을 실시하였다. 2002년 3월부터 2005년 1월말까지 3개월, 6개월, 9개월 및 1년물 국채선도금리(forward rate)와 각 시계열들의 현물 금리의 수익률 및 변동성자료를 사용하여 그랜져인과관계분석, 충격반응함수 및 분산분해 분석을 실시하였으며 주요 분석결과는 다음과 같다. 먼저 수익률 및 변동성을 이용한 그랜져인과관계분석(Granger causality test)결과에 의하면 국채 선도금리시장이 국채현물시장보다 새로운 정보에 대하여 더 효율적으로 반응하는 것으로 나타났다. 충격 반응함수(impulse response analysis)에서도 국채선도금리시장의 국채현물시장에 대한 영향력이 국채현물시장의 국채선도금리시장에 대한 영향력보다 더 강하고 지속적인 것으로 나타났다. 분산분해분석(variance decomposition analysis)에서는 전체적으로 3개월 및 6개월 등기간이 짧은 국채선도금리 수익률 및 변동성이 기간이 긴 국채선도금리보다 국채현물시장에 대한 영향력이 상대적으로 더 큰 것으로 나타났다. 이러한 분석결과로부터 새로운 정보에 대하여 국채현물시장보다는 국채선도금리시장이 더 효율적으로 반응하고 있음을 추론해 볼 수 있으며 이는 기존 국내외 주식현물시장과 선물시장들 간의 영향력을 분석한 결과 선물시장의 현물시장에 대한 영향력이 더 강한다는 결과들과 일맥상통하는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.