• 제목/요약/키워드: autonomous robot

검색결과 907건 처리시간 0.027초

유아용 에듀테인먼트 Mon-E로봇 (An Edutainment Mon-E Robot for Young Children)

  • 김종철;김현호
    • 로봇학회논문지
    • /
    • 제6권2호
    • /
    • pp.147-155
    • /
    • 2011
  • This paper presents an edutainment robot for young children. The edutainment robot called 'Mon-e' has developed by the Central R&D Laboratory at KT. The main services of the Mon-E robot are autonomous moving service, object card and story book telling service and videophone service. The RFID technology was introduced for easy interface to young children. The face of Mon-E robot is mounted with an RFID reader. The RFID tag is pasted on story book and object card. If you approach a book or an object card to the face of Mon-E, the Mon-E robot recognizes the identified code and plays its service. In autonomous moving, if the Mon-E robot meets obstacles, it moves back and turns left or right or half rotation. In videophone service, if young children approach an RFID card to the Mon-E, the Mon-E can make a call to the specific number, which is contained in the RFID card. The developed Mon-E robot has tested in real world environment and is evaluated young children and their parents. In the result of evaluation, the feeling of satisfaction was high to main services of Mon-E robot.

자이로스코프와 차등 엔코더를 사용한 이동로보트의 추측항법 시스템 (Dead reckoning navigation system for autonomous mobile robot using a gyroscope and a differential encoder)

  • 박규철;정학영;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.241-244
    • /
    • 1997
  • A dead reckoning navigation system is developed for autonomous mobile robot localization. The navigation system was implemented by novel sensor fusion using a Kalman filter. A differential encoder and the gyroscope error models are developed for the filter. An indirect Kalman filter scheme is adopted to reduce the computational burden and to enhance the navigation system reliability. The filter mutually compensates the encoder errors and the gyroscope errors. The experimental results show that the proposed mobile . robot navigation algorithm provides the reliable position and heading angle of the mobile robot without any help of the external positioning systems.

  • PDF

Mobile Robot Navigation using a Dynamic Multi-sensor Fusion

  • Kim, San-Ju;Jin, Tae-Seok;Lee, Oh-Keol;Lee, Jang-Myung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.240-243
    • /
    • 2003
  • In this study, as the preliminary step far developing a multi-purpose Autonomous robust carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as sonar, IR sensor for map-building mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within both indoor and outdoor environments. Smart sensory systems are crucial for successful autonomous systems. We will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, since there exist several recent thorough books and review paper on this paper. It is first dealt with the general principle of the navigation and guidance architecture, then the detailed functions recognizing environments updated, obstacle detection and motion assessment, with the first results from the simulations run.

  • PDF

구조화된 실내 환경에서 초음파센서를 이용한 모바일 로봇 실시간 localization 기법 (Real-time Localization of Mobile Robot Using Ultrasonic Sensor in Structured Indoor Environment)

  • 이만희;조황
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.1068-1076
    • /
    • 2005
  • In order to increase the autonomous navigation capability of a mobile robot, it is very crucial to develop a method for the robot to be able to recognize a priori hon structured environmental characteristics. This paper proposes an ultrasonic sensor based real-time method for recognizing a priori known structured indoor environmental characteristics like a wall and comer Unlike the methods reported in the literature the information obtained from the sensor can be processed in real-time by extended Kalman filter to update estimations of the position and orientation of robot with respect to known environmental characteristics.

네트워크 기반 자율이동로봇을 위한 장애물 회피 알고리즘 개발 (Development of an Obstacle Avoidance Algorithm for a Network-based Autonomous Mobile Robot)

  • 김홍열;김대원;김홍석;손수경
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권5호
    • /
    • pp.291-299
    • /
    • 2005
  • An obstacle avoidance algorithm for a network-based autonomous mobile robot is proposed in this paper. The obstacle avoidance algorithm is based on the VFH(Vector Field Histogram) algorithm and two delay compensation methods with the VFH algorithm are proposed for a network-based robot with distributed environmental sensors, mobile actuators, and the VFH controller. Firstly, the environmental sensor information is compensated by prospection with acquired environmental sensor information, measured network delays, and the kinematic model of the robot. The compensated environmental sensor information is used for building polar histogram with the VFH algorithm. Secondly, a sensor fusion algorithm for localization of the robot is proposed to compensate the delay of odometry sensor information and the delay of environmental sensor information. Through some simulation tests, the performance enhancement of the proposed algorithm in the viewpoint of efficient path generation and accurate goal positioning is shown here.

이동로봇을 위한 링 배열 구조광 영상 기반 거리측정 센서 및 자율주행 (Ring Array of Structured Light Image Based Ranging Sensor and Autonomous Navigation for Mobile Robot)

  • 신진;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.571-578
    • /
    • 2012
  • In the paper, we proposed a ring type structured light image based embedded ranging sensor for a mobile robot. Since the proposed ranging sensor obtains omnidirectional object distance, it is useful for autonomous navigation of a mobile robot. By matching the local omnidirectional distance map with a given global object map, it is possible to get position and heading angle of mobile robot in the global coordinates. Experiments for matching and navigation were carried out to verify the performance of the proposed ranging sensor.

비홀로노믹 이동로봇의 자율주행을 위한 기하학적 경로 추종 및 장애물 회피 방법 (Geometric Path Tracking and Obstacle Avoidance Methods for an Autonomous Navigation of Nonholonomic Mobile Robot)

  • 김동형;김창준;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제16권8호
    • /
    • pp.771-779
    • /
    • 2010
  • This paper presents a method that integrates the geometric path tracking and the obstacle avoidance for nonholonomic mobile robot. The mobile robot follows the path by moving through the turning radius given from the pure pursuit method which is the one of the geometric path tracking methods. And the obstacle generates the obstacle potential, from this potential, the virtual force is obtained. Therefore, the turning radius for avoiding the obstacle is calculated by proportional to the virtual force. By integrating the turning radius for avoiding the obstacle and the turning radius for following the path, the mobile robot follows the path and avoids the obstacle simultaneously. The effectiveness of the proposed method is verified through the real experiments for path tracking only, static obstacle avoidance, dynamic obstacle avoidance.

이동로봇의 장애물 회피기술 (A Technology of Obstacle Avoidance of Mobile Robot)

  • 오세봉;한성현
    • 한국공작기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.132-145
    • /
    • 2008
  • We propose a new technique for autonomous navigation and travelling of mobile robot based on ultrasonic sensors through the narrow labyrinth that leave only distance of a few centimeters on each side between the guides and the robot. In our current implementation the ultrasonic sensor system fires at a rate of 100 ms, that is, each of the 8 sensors fires once during each 100 ms interval. This is a very good firing rate, implemented here for optimal performance. This paper presents an extensively tested and verified solution to the problem of obstacle avoidance. Our solution is based on the optimal placement of ultrasonic sensors at strategic locations around the robot. Both the sensor location and the associated navigation algorithm are defined in such a way that only the accurate radial sonar data is used for accurate travelling.

이동로봇에서의 효율적인 자세제어 방법 (The efficient motion control method for autonomous mobile robot)

  • 강민구;이진수;김상우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.387-392
    • /
    • 1992
  • This paper presents a local trajectory generation method which is based on a sequence of reference posture-velocities and the efficient low level control algorithm which constructs the complete smooth curve from the trajectory specification. The reference trajectory generator(RTG) which is in between the local path planner(LPP) and the robot motion controller(RMC) generates a sequence of set-points for each path segments from the LPP and pass it to the RMC. The RMC controls the motions of vehicle which should follow the sequence. In the feedback controller of VMC, the method which compensates robot posture-velocity error correctly is used. These methods are implemented on indoor autonomous vehicle, 'ALIVE' mobile robot. The ALIVE mobile robot system is implemented on the 32bit VME bus system: the two VME CPU's are used for RTG and RMC, while the 80C196KC-based VME board is used for motor controller.

  • PDF

핫셀 적용을 위한 벽면주행 청소로봇에 관한 연구 (A study on autonomous Cleaning Robot for Hot-cell Application)

  • 한상현;김기호;박장진;장원석;이응혁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.415-415
    • /
    • 2000
  • The functions of a mobile robot such as obstacle knowledge and collision avoidance for in-door cleaning are necessary features, as has been much studied in the field of industrial automatic guided vehicle or general mobile robot. A mobile robot, in order to avoid collision with obstacles, has to gather data with environment knowledge sensors and recognize environment and the shape of obstacles from the data. In the study, a wall-following algorithm was suggested as a autonomous moving algorithm in which a mobile robot can recognize obstacles in indoor like environment and do cleaning work in effect. The system suggested in the study is for cleaning of nuclear material dusts generated in the process of nuclear fuel manufacturing and decontamination of devices in disorder which is performed in M6 radioactive ray shield hot-cell in IMEF(Irradiated Material Examination Facility) in the Korea Atomic Energy Research Institute.

  • PDF