• Title/Summary/Keyword: automotive steering systems

Search Result 82, Processing Time 0.033 seconds

Integrated Chassis Control with Electronic Stability Control and Active Front Steering under Saturation of Front Lateral Tire Forces (전륜 횡력의 포화를 고려한 ESC와 AFS의 통합 섀시 제어)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.903-909
    • /
    • 2015
  • This article presents an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) under saturation of front lateral tire force. Regardless of the use of AFS, the front lateral tire forces can be easily saturated. Under the saturated front lateral tire force, AFS cannot be effective to generate a control yaw moment needed for the integrated chassis control. In this paper, new integrated chassis control is proposed in order to limit the use of AFS in case the front lateral tire force is saturated. Weighed pseudo-inverse control allocation (WPCA) with variable weight is adopted to adaptively use the AFS. To check the effectiveness of the proposed scheme, simulation is performed on a vehicle simulation package, CarSim. From simulation, the proposed integrated chassis control is effective for vehicle stability control under saturated front lateral tire force.

Study on the Optimal Design of Bellows as an Energy Absorbing Element (에너지 흡수요소로서의 주름관(bellows)의 최적설계에 관한 연구)

  • 김행겸;김권희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.121-129
    • /
    • 1997
  • Bellows are suggested as energy absorbing elements for automotive steering systems. A metallic bellows has nearly constant axial collapse load which is desirable as an energy absorbing element for a steering column. Axial collapsability and bending flexibility of bellows can be utilized to reduce upward tilting and backward displacement of steering columns in the early stage of high speed crash. Since bending flexibility of bellows has negative effects on the vibration characteristics of steering columns it is necessary to maximize the first natural frequency of a bellows while maintaining its plastic bending flexibility and axial collapse load. An effort is made to attain optimum design of bellows based upon the Taguchi method. A general guideline for design of bellows is suggested.

  • PDF

Development of Predictive Smoothing Voter using Exponential Smoothing Method (지수 평활법을 이용한 Predictive Smoothing Voter 개발)

  • Kim, Man-Ho;Lim, Chang-Hwy;Lee, Suk;Lee, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.34-42
    • /
    • 2006
  • As many systems depend on electronics, concern for fault tolerance is growing rapidly. For example, a car with its steering controlled by electronics and no mechanical linkage from steering wheel to front tires(steer-by-wire) should be fault tolerant because a failure can come without any warning and its effect is devastating. In order to make system fault tolerant, there has been a body of research mainly from aerospace field. This paper presents the structure of predictive smoothing voter that can filter out most erroneous values and noise. In addition, several numerical simulation results are given where the predictive smoothing voter outperforms well-known average and median voters.

A Study on Integrated Control of AFS and ARS Using Fuzzy Logic Control Method (Fuzzy Logic 제어를 이용한 AFS와 ARS의 통합제어에 관한 연구)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.65-70
    • /
    • 2014
  • An Integrated Dynamics Control system with four wheel Steering (IDCS) is proposed and analysed in this study. It integrates and controls steer angle of front and rear wheel simultaneously to enhance lateral stability and steerability. An active front steer (AFS) system and an active rear steer (ARS) system are also developed to compare their performances. The systems are evaluated during brake maneuver and several road conditions are used to test the performances. The results showed that IDCS vehicle follows the reference yaw rate and reduces side slip angle very well. AFS and ARS vehicles track the reference yaw rate but they can not reduce side slip angle. On split-${\mu}$ road, IDCS controller forces the vehicle to go straight ahead but AFS and ARS vehicles show lateral deviation from centerline.

INFLUENCE OF PROVIDING BODY SENSORY INFORMATION AND VISUAL INFORMATION TO DRIVER ON STEER CHARACTERISTICS AND AMOUNT OF PERSPIRATION IN DRIFT CORNERING

  • NOZAKI H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • Driving simulations were performed to evaluate the effect of providing both visual information and body sensory information on changes in steering characteristics and the amount of perspiration in drift cornering. When the driver is provided with body sensory information and visual information, the amount of perspiration increases and the driver can perform drift control with a moderate level of tension. With visual information only, the driver tends to easily go into a spin because drift control is difficult. In this case, the amount of perspiration increases greatly as compared with the case where body sensory information is also provided, reflecting a very high perception of risk. When body sensory information is provided, the driver can control drift adequately, feeding back the roll angle information in steering. The importance of the driver's perception of the state of the vehicle was thus confirmed, and a desirable future direction for driver assistance systems was determined.

A Study on the Induction Method of Transfer Function of Bond Graph using Mason's Rule (메이슨의 공식을 이용한 본드그래프의 전달함수 유도법에 관한 연구)

  • 한창수;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.66-75
    • /
    • 1998
  • In many case of optimal design and sensitivity analysis, obtaining of transfer function between input and output variables is a difficult and time-consuming problem. The bond graph modeling is a method that is used for making it easy to analyze complex systems composed of mechanical and electrical parts. It gives us a simple and systematic tool to get state-space equations easily. And we can obtain the transfer function graphically using bond graph and Mason's rule. This paper shows how bond graphs are converted to block diagram and how Mason's rule is applied. And the simple direct method to obtain transfer function from bond graph is introduced. As a example, induction of transfer function of electric power steering composed of mechanical and electrical parts will be done.

  • PDF

A Study on the Control System of the Narrow Vehicles for Improvement of Maneuvering under Emergency Situation (폭이 좁은 차량의 비상주행시 주행성능개선을 위한 제어시스템에 관한 연구)

  • So, Sang-Gyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.166-174
    • /
    • 2004
  • In urban area narrow commuter vehicles have attracted interest as a possible solution to reduce traffic congestion and parking problems. However, a narrow vehicle has an increased to overturn during hard cornering when compared to conventional vehicles. This tendency can be reduced by tilting it toward the inside of the turn. Two types of automatic tilting control systems which are Direct Tilt Control(DTC) and Steering Tilt Control(STC) have been developed. In this paper as one of the technique to improve the handling performance for the unusual vehicle the control system which blends both the DTC and the STC system is considered. It uses the merits of both the DTC and the STC system. As a control strategy for combination the switching control method is used. Finally, the fact that the unusual vehicle is safe under an emergency situation such as slippery road surface is proved by computer simulation.

Practical Study about Obstacle Detecting and Collision Avoidance Algorithm for Unmanned Vehicle

  • Park, Eun-Young;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.487-490
    • /
    • 2003
  • In this research, we will devise an obstacle avoidance algorithm for a previously unmanned vehicle. Whole systems consist mainly of the vehicle system and the control system. The two systems are separated; this system can communicate with the vehicle system and the control system through wireless RF (Radio Frequency) modules. These modules use wireless communication. And the vehicle system is operated on PIC Micro Controller. Obstacle avoidance method for unmanned vehicle is based on the Virtual Force Field (VFF) method. An obstacle exerts repulsive forces and the lane center point applies an attractive force to the unmanned vehicle. A resultant force vector, comprising of the sum of a target directed attractive force and repulsive forces from an obstacle, is calculated for a given unmanned vehicle position. With resultant force acting on the unmanned vehicle, the vehicle's new driving direction is calculated, the vehicle makes steering adjustments, and this algorithm is repeated.

  • PDF

A Study On Steering System for Mobile Robot with Permanent Magnet Wheels (영구자석 바퀴를 이용한 이동 로봇의 조향 시스템 연구)

  • Kim Jin-Gak;Yi Hwa-Cho;Han Seung-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.311-312
    • /
    • 2006
  • In this paper, steering systems for mobile robot with permanent magnet wheels are discussed. The mobile robot with permanent magnet wheels can have three different types of steering and driving configurations; two-wheels, three-wheels, four-wheels. By a Two-WD(Wheel Driving) system, driving and steering characteristics are controlled by ratio of each wheel speeds. Three-WD system is steered by a front wheel and driven by rear wheels. Four-WD system has better stability than two wheel system. Usually the permanent magnet wheel has nearly none slip. Thus turning radius of the mobile robot with three-WD and four-WD System will be increased and the steering and driving system will be complicated. To solve this problem, two magnet wheels with two dummy wheels are used in this study. fuming radius of the developed mobile robot is small and the structure of the robot is simple. It is possible to move forward, backward, to turn left and right, and to rotate freely with two-WD. This study proved that two-WD system is very suitable fur the mobile robot with permanent magnet wheels.

  • PDF

Intelligent Online Driving System

  • Xuan, Chau-Nguyen;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.479-479
    • /
    • 2000
  • Recently, IVS(Intelligent Vehicle Systems) or ITS(Intelligent Traffic Systems) are much concerned subjects of automotive industry. In this paper, we will introduce an Intelligent Online Driving System for a car. This system allows the driver to be able to drive the car just by operating an integrated joystick. The proposed driving system could be implemented into any car and the key point of the design is that the driver still can drive the car as normal without using the joystick. Our Intelligent Online Driving System includes the integrated joystick, steering wheel control system, brake and acceleration (B&A)pedals control system, and the central control computer system. Steering wheel and B&A pedals are controlled by AC servo-motors. The integrated joystick generates the desired positions and the embedded computer controls these two servomotors to track the commands given by joystick. The control method for two servo-motors is PID control.

  • PDF