• Title/Summary/Keyword: automotive fuel cell

Search Result 168, Processing Time 0.025 seconds

Experimental Studies on the Stack Cooling Performance Using a $CO_2$ Air Conditioning System in Fuel Cell Vehicles (이산화탄소 에어컨 시스템을 이용한 연료전지 자동차의 스택 냉각성능에 대한 실험적 연구)

  • Kim, Sung-Chul;Kim, Min-Soo;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.87-93
    • /
    • 2008
  • The $CO_2$ air conditioning system installed in fuel cell vehicles could be used either for stack cooling or for cabin cooling, and thus was used for the stack cooling when additional stack heat release was required over a fixed radiator capacity for high power generation. This study investigated the performance of the stack cooling system using $CO_2$ air conditioner at various operating conditions. Also, the heat releasing effectiveness and mutual interference were analyzed for the stack cooling system using an air conditioner and compared with the conventional radiator cooling system with/without cabin cooling. The heat release of the stack cooling system with the aid of $CO_2$ air conditioner increased up to 36% more than that of the conventional radiator cooling system with cabin cooling. Furthermore, the heat release of the stack cooling system using $CO_2$ air conditioner increased more by 7% than that of the conventional radiator cooling system without cabin cooling.

Fueling Options for Fuel Cell Vehicle (연료전지 자동차의 연료 공급)

  • 남석우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.26 no.3
    • /
    • pp.6-11
    • /
    • 2004
  • 연료전지에서 반응에 참여하는 주된 연료는 수소이며, 따라서 연료전지 자동차에 사용되는 고분자전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell. PEMFC)에도 연료로서 수소를 공급해야 한다. 1㎾급 연료전지의 경우 한 시간에 약 1㎥($25^{\circ}C$, 1기압)의 수소를 필요로 하므로, 수십 ㎾ 용량의 자동차용 연료전지에는 수십 ㎥/h의 빠른 속도로 수소를 공급할 수 있는 장치가 필요하다. 또한 이러한 수소 공급 속도를 유지하면서 1회 연료 충전으로 수백 km를 자동차가 주행할 수 있도록 충분한 양의 연료가 자동차 내에 저장되어 있어야 편리할 것이다. (중략)

  • PDF

Evaluation of Mechanical and Electrical Properties of Bipolar Plate Made of Fiber-reinforced Composites for PEM Fuel Cell (섬유강화 복합재를 사용한 PEM 연료전지 분리판의 전기적.기계적 특성 평가)

  • Lee, Hee-Sub;Ahn, Sung-Hoon;Jeon, Ui-Sik;Ahn, Sang-Yeoul;Ahn, Byung-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.39-46
    • /
    • 2006
  • The fuel cell is one of promising environment-friendly energy sources for the next generation. The bipolar plate is a major component of the PEM fuel cell stack, which takes a large portion of stack cost. In this study, as alternative materials for bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity To achieve desired electrical properties, specimens made with different mixing ratio, processing pressure and temperature were tested. To increase mechanical strength, one or two layers of woven carbon fabric were added to the graphite and resin composite. Thus, the composite material was consisted of three phases: graphite particles, carbon fabric, and epoxy resin. By increasing mixing ratio of graphite, fabricated pressure and process temperature, the electric conductivity of the composite was improved. The results of tensile test showed that the tensile strength of the two-phase graphite composite was about 4MPa, and that of three-phase composite was increased to 57MPa. As surface properties, contact an91e and surface roughness were tested. Graphite composites showed contact angles higher than $90^{\circ}$, which mean low surface energy. The average surface roughness of the composite specimens was $0.96{\mu}m$.

Steady State Performance Analysis of Five-mode Hybrid Power Transmission Systems (5-모드 하이브리드 동력전달 시스템의 정상상태 성능분석)

  • Lim, Won-Sik;Kim, Nam-Woong;Choi, Wan-Mug;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • The core of the automotive industry's strategy to handle the climate change can be explained as the development and distribution of the vehicles with high fuel efficiencies and low emission. Clean Diesel, hydrogen fuel cell, electric, and especially hybrid power-train vehicles have been actively studied. This paper dynamically analyzes the performance of a hybrid system's five driving modes. The research subject consists of one engine, two electric motors, two simple planetary gears, and one compound planetary gears with five clutches. To define the steady state equation of the system, interaction formulas of five driving modes are introduced with motion variables and torque variables. These formulas are then used to analyze the speeds, torques, and power flows of each mode.

Engine Room Layout Design Optimization of Fuel Cell Vehicle Using CFD Technique (CFD를 이용한 연료전지 차량 레이아웃 최적화)

  • Kim, Jung-Ill;Jeon, Wan-Ho;Cho, Jang-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.99-106
    • /
    • 2011
  • This paper deals with engine room layout design optimization of fuel cell electric vehicle (FCEV), which has been proposed as a potential alternative to fossil fuel depletion. Investing the great R&D efforts, the global vehicle manufacturers, especially Honda motor corporate, have shown not prototype vehicle but commercial vehicle using fuel cell in the market recently. In this paper, we analyze cooling performance and flow characteristic in the engine room of newly FCEV, in addition we suggest the optimization process for engine room layout design optimization. The two radiators in the vehicle for fuel cell stack and electronic components cooling have been analyzed and their performance are obtained in terms of cooling performance ratio (CPR). The value of CPR should always be less than one and based on criteria, we have achieved the optimum cooling performance of radiators for stack and electronic components. Aerodynamic performance is evaluated in terms of drag coefficient, improved through underbody modification using air devices.

Experimental and Numerical Analyses of Flexible Forming Process for Micro Channel Arrays of Fuel Cell Bipolar Plates (연료전지 분리판의 마이크로 채널 제작을 위한 가변성형공정의 실험적 및 수치적 연구)

  • Kim, H.S.;Shim, J.M.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.499-505
    • /
    • 2012
  • The fuel cell is a very promising power generation system combining the benefits of extremely low emissions, high efficiency, ease of maintenance and durability. In order to promote the commercialization of fuel cells, a flexible forming process, in which a hyper-elastic rubber is adopted as a medium to transmit forming pressure, is suggested as an efficient and cost effective manufacturing method for fuel cell bipolar plates. In this study, the ability of this flexible forming process to produce the micro channel arrays on metallic bipolar plates was first demonstrated experimentally. Then, a finite element (FE) model was built and validated through comparisons between simulated and experimental results. The effects of key process parameters on the forming performance such as applied load and punch velocity were investigated. As a result, appropriate process parameter values allowing high dimensional accuracy without failure were suggested.

A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications (다변수 최적화 기법을 이용한 자동차용 고분자 전해질형 연료전지 시스템 모델링에 관한 연구)

  • Kim, Han-Sang;Min, Kyoung-Doug;Jeon, Soon-Il;Kim, Soo-Whan;Lim, Tae-Won;Park, Jin-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.43-48
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane [PEM] fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cell system, multi-variable optimization code was adopted. Using this method, the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study can be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications (다변수 최적화 기법을 이용한 자동차용 고분자전해질형 연료전지 시스템 모델링에 관한 연구)

  • Kim, Han-Sang;Min, Kyoung-Doug;Jeon, Soon-Il;Kim, Soo-Whan;Lim, Tae-Won;Park, Jin-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.541-544
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane (PEM) fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cel1 system, multi-variable optimization code was adopted. Using this method the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study tan be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

Assembly Analysis for Evaluation of Sealing in PEMFC Stack (고분자 전해질 연료전지 스택의 시일링 평가를 위한 체결 해석)

  • Kim, Dae-Young;Kim, Jung-Min;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.68-75
    • /
    • 2010
  • The one of the major problems in the development of PEMFC was regarding to the assurance of sealing on stack. The failure on the sealing creates the problems of fuel leakage, mixing, internal combustion, damage on parts and can be a direct reason for the degrading the efficiency of fuel cell. This paper studies on the analytical approach for improving the contacting pressure distribution on the gasket at the evaluation on the sealing of fuel cell stack. So, the assembly analysis on multi layered fuel cell stack was performed. The research on the simplification of finite element model was performed for three dimensional analysis at the multi layered state. The improved contact pressure distribution was obtained through the case studies on gasket for better sealing. In addition, the number of the cell was determined for the effective analysis and the structural characteristics were evaluated based on this research.