• Title/Summary/Keyword: automotive control

Search Result 2,031, Processing Time 0.022 seconds

Modal Sky-Hook Dampers for Active Suspension Control (능동형 현가시스템을 위한 모드 SKY-HOOK 감쇠 제어기)

  • 곽병학;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.1-11
    • /
    • 1995
  • Active suspension control for vehicles is developed to improve both ride comfort and steering stability which are in trade off relation. In this study, the modal sky-hook controller for 7 D. O. F. model is proposed to resolve the problems such as computaional power restriction and uncertainties in modeling of systems and environments. Modal sky-hook controller reduces the coupling between the modes to be controlled. The simulation result for ride comfort shows that the perform ance of the proposed controller matches that of the optimal controller. Systematic method of determining its gain is proposed. The model sky-hook controller shows the robustness to road irregularity and modeling error.

  • PDF

QUALITY IMPROVEMENT OF VEHICLE DRIFT USING STATISTICAL SIX SIGMA TOOLS

  • PARK T. W.;SOHN H. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.625-633
    • /
    • 2005
  • Vehicle drift was reduced using statistical six sigma tools. The study was performed through four steps: M (measure), A (analyze), I (improve), and C (control). Step M measured the main factors which were derived from a fishbone diagram. The measurement system capabilities were analyzed and improved before measurement. Step A analyzed critical problems by examining the process capability and control chart derived from the measured values. Step I analyzed the influence of the main factors on vehicle drift using DOE (design of experiment) to derive the CTQ (critical to quality). The tire conicity and toe angle difference proved to be CTQ. This information enabled the manufacturing process related with the CTQ to be improved. The respective toe angle tolerance for the adjustment process was obtained using the Monte Carlo simulation. Step C verified and controlled the improved results through hypothesis testing and Monte Carlo simulation.

Effect of four-wheel steering system on vehicle handling characterisitcs (4륜 조향시스템이 차량의 주행역학적 특성에 미치는 영향)

  • 심정수;허승진;유영면
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.21-29
    • /
    • 1990
  • Equipments of passenger cars with modern technologies are gaining their importance. Related with such developments, the four-wheel steering system (4WS) was introduced recently to a few passenger cars in the market. The most important research goal on this new steering system is improvement of active safety, in other words, improvement of handling characteristics of vehicle stability and maneuverability. This paper presents a computer-based study about the effects of 4WS system on the vehicle handling characteristics. A simple bicycle model of 2 d.o.f. is used for the development of four wheel control algorithms of 4WS system, and the rear wheel control strategies are applied to a complex vehicle model of 16 d.o.f. for simulation of selected ISO-driving tests. The 4WS systems, which reduce the sideslip angle at the mass center of vehicle to almost zero, show much improved handling characteristics compared to that of the conventional 2WS system. These 4WS systems, however, result in vehicles with eigen-steer characteristics of extreme understeer behaviour.

  • PDF

A Simulation on the Stream and NOx Characteristics by EGR Rate Control (EGR율 제어에 따른 유동 및 NOx 특성에 관한 시뮬레이션)

  • 한영출;오용석;오상기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.93-98
    • /
    • 2002
  • It is a present situation that the control on automobile emission is getting more restrictive and also the regulations for emission are changing greatly up to level of those advanced foreign countries. Specially, it has been many years that exhaust gases from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx and PM among those compositions. Thus, this research focused on the Exhaust Gas Recirculation (EGR) and the target fur this research is heavy-duty turbo-diesel engine with EGR, and conducted with numerical simulation to get engine performance and the characteristics of emission. Furthermore. the results obtained under different conditions such as rpm, power, EGR rate are compared and investigated with the numerical simulation using KIVA-3.

A Study on the Development of Stoichiometric Direct Injection Gasoline Engine by Homogeneous Charge (균일 혼합기를 이용한 이론 공연비 직접분사 가솔린 엔진 개발에 관한 실험적 연구)

  • 이내현;유철호;최규훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.32-42
    • /
    • 1998
  • Lean burn gasoline engine is recognized as a promising way to meet better fuel economy. Lean burn engine is classified into port injection and direct injection(DI), DI is more active technique for improving fuel economy with ultra-lean operation, Nowadays, port injected lean burn engine has been produced by many Japan maker. Also, DI engine is also possible for production owing to improvement in control technique of spray, flow air fuel ratio. DI engine uses either homogeneous stoichiometric mixture or stratified mixture by controlling injection timing to be early or late respectively. HM(homogeneous mixture) is worse than SM(stratified mixture) in view of ultra-lean operation in partical load and Nox reducion by using EGR control. But, HM has advanteges in cold starting and emission reduction during transient operation, This paper describes experimental variables and bench test results of HM GDI engine.

  • PDF

A Study on the Spray and Combustion Characteristics of Gasoline Direct Injector (가솔린 직분식 인젝터의 분무 및 연소특성에 관한 연구)

  • 신민규;박종호;유철호;이내현;최규훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.114-122
    • /
    • 1997
  • Nowadays, gasoline direct injection engines are being commercialized by virtue of improvement in control technology of spray, flow, air fuel ratio. The stratified charge type has the advantage of improving lean limit. The homogeneous type has the advantage of reducing engine-out hydrocabon emissions in the first 30 seconds after a cold start, in addition, improving transient air fuel ratio control. The vaporization and mixing if injected fuel with air has to e completed in a short time and the fuel film in cylinder and on piston has to be minimized. So, the flow and injection should be well controlled. This paper surveyed the spray characteristics of gasoline direct injection by using laser equipment and the combustion characteristics of the single cylinder engine using homogeneousas-mixture type gasoline direct injection.

  • PDF

Development of a Lane Departure Avoidance System using Vision Sensor and Active Steering Control (비전 센서 및 능동 조향 제어를 이용한 차선 이탈 방지 시스템 개발)

  • 허건수;박범찬;홍대건
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.222-228
    • /
    • 2003
  • Lane departure avoidance system is one of the key technologies for the future active-safety passenger cars. The lane departure avoidance system is composed of two subsystems; lane sensing algorithm and active-steering controller. In this paper, the road image is obtained by vision sensor and the lane parameters are estimated using image processing and Kalman Filter technique. The active-steering controller is designed to prevent the lane departure. The developed active-steering controller can be realized by steer-by-wire actuator. The lane-sensing algorithm and active-steering controller are implemented into the steering HILS(Hardware-In-the-Loop Simulation) and their performance is evaluated with a human driver in the loop.

A Study on Evaporative Emissions in a Spark Ignition Engine with a Carbon Canister

  • Park, Gyeung-Ho;Cho, Gyu-Sang
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.161-165
    • /
    • 2004
  • Evaporative emissions from gasoline powered vehicles continue to be a major concern. The performance of carbon canister in evaporative emission control systems has become an important aspect of overall fuel system development and design. A vehicle's evaporative emission control system is continuously working, even when the vehicle is not running, due to generation of vapors from the fuel tank during ambient temperature variations. In this study, the effects of evaporative emissions on the engine performance were investigated. The experimental results show the effectiveness of this system for future exhaust emissions and enhanced evaporative emissions. This paper discusses the evaluation on the relationship between carbon canister condition and engine performance while engine is running.

A Study on Optimization Development of Peltier Air-conditioning System (펠티어 냉난방시스템 최적화 기술에 관한 연구)

  • Park, Sanghoon;Jeong, Soojin;Park, Youngwoo;Park, Ukyung;Song, Beomjung
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 2013
  • This study is concerned with air-conditioning system in use of thermoelectric device. It is introduced that the well designed structures for better cooling & heating performance with high efficiency. And also it is performed that the system performance test of four types trial products for the use of hybrid commercial vehicle. System performance is affected by many component parts, especially heat sink design & power control method. It is applied that dual extrusive fin tube with buffer zone for the effective radiating of circulating liquid in tube. And also it is applied that power supply method with constant-current system. It is attained that system cooling capacity is 1.2kW, COP is 0.95.

  • PDF

Improvement of Middle or High Speed Restart Performance Using Hall Sensor for the Sensorlessly Controlled IPMSM Fan motor (센서리스 제어방식 IPMSM 팬 모터의 홀센서를 이용한 중·고속 재기동 성능개선)

  • Lee, J.H.;Jung, Y.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.73-78
    • /
    • 2012
  • This paper investigates the restart performance of sensorlessly controlled IPMSM Fan motor free-running in middle or high speed range just after inverter power off. There could be some difficulties to extract exact position information by using conventional sensorless control for restarting the motor because of stopped inverter operation. To solve this problem, we proposes to use low cost hall sensor. Using a hall sensor with SMO (Sliding Mode Observer) give us a solution to facilitate rotor position information extraction. The algorithm in this paper shows a certain way of the restarting method.