• Title/Summary/Keyword: automotive control

Search Result 2,031, Processing Time 0.04 seconds

A Study on Relation of Needle-Nozzle Flow of Piezo-driven Injector by using Eulerian-Lagrangian Multi-phase Method (Eulerian-Lagrangian 다상 유동해석법에 의한 피에조인젝터의 니들-노즐유동 상관성 연구)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.108-114
    • /
    • 2010
  • The injection nozzle of an electro-hydraulic injector is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the effects of needle movement in a piezo-driven injector on unsteady cavitating flows behavior inside nozzle were investigated by cavitation numerical model based on the Eulerian-Lagrangian approach. Aimed at simulating the 3-D two-phase flow behavior, the three dimensional geometry model along the central cross-section regarding of one injection hole with real design data of a piezo-driven diesel injector has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. As this research results, we found that it could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle.

Study of Pre-ventilation Effects on the Cabin Thermal Load (주차환기 시스템이 차 실내 열부하에 미치는 영향에 관한 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.84-90
    • /
    • 2014
  • The aim of this paper is to investigate the application of solar energy in reducing cabin thermal load. When a vehicle is parked under the sun in summer, the interior temperature can reach up to $70^{\circ}C$ depending on the solar intensity. Solar power, one of the green energies, is used in automobile air conditioning systems, in order to operate the blower. The power supply of a blower's voltage has been used in a solar sunroof experiment. At the climate wind tunnel, cabin temperature changes were conducted with various operating modes of an air handling system and the preventilation parking conditions of several vehicles, outdoors, was also examined. The test results of the solar sunroof, 39.3W power and 14.1% efficiency were obtained. The thermal load behavior was analysed with the air handling system operating mode differently according to the cabin temperature. By simply operating the blower, average cabin temperature decreased between $5^{\circ}C{\sim}10^{\circ}C$ in those vehicles parked outdoors in summer. This reveals that cabin thermal comfort can be improved without consuming the vehicle's extra energy, and that the performance of the air-conditioning system is better than those currently found in vehicles. Moreover, fuel economy will be increased as a result of the reduction in the use of the air-conditioning system, and many other human advantages will be gained. Such advantages include minimized VOCs and a healthy cabin environment.

A Study on Evaluation of Oxidation Degradation of Bidiesel and Biodiesel Blended Fuel Distributing in Domestic (국내 유통 바이오디젤 및 바이오디젤 혼합연료의 산화열화 연구)

  • Min, Kyong-Il;Yim, Eui Soon;Na, Byung-Ki;Jung, Choong-Sub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.135-143
    • /
    • 2013
  • In this study, we suggested effective countermeasure of biodiesel oxidation problems by investigating the oxidation degradation of biodiesels derived from variable resources and the level of oxidation stability of current distributing biodiesel blended fuels (2%) in Korea, and oxidation stability change according to storage time (for 3 month) and biodiesel blending ratio (2, 5, 7, 10%). By the composition analysis results of biodiesel from various resources which are possible to distribute in Korea, the biodiesel from animal fat has poor oxidation stability and cold performance, while the biodiesel from coconut and palm kernel which are considered as future potential raw material showed good oxidation stability and cold performance. The oxidation stability level of current distributing biodiesel blended fuels in Korea was excellent with showing over 30 hours (average 68 hours) stability, but the oxidation stability of the blended fuel with animal fat biodiesel having poor oxidation property (1.22 hours) was rapidly decreased to below 32 hours by mixing only 2%. Therefore, we have to pay attention to quality control of oxidation property, because the oxidation stability problem can be caused by increasing biodiesel blending ratio and diversifying raw materials those have worse property.

A Study on the Tuning Parameter of Continuous Variable Valve for Reverse Continuous Damper (리버스 무단 댐퍼용 연속가변밸브의 튜닝 파라미터에 관한 연구)

  • 윤영환;최명진;유송민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.192-200
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions for passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed, which is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper that offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects (유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성)

  • Ha, J.S.;Koh, S.K.;Ong, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

Design, Fabricaiton and Testing of a Piezoresistive Cantilever-Beam Microaccelerometer for Automotive Airbag Applications (에어백용 압저항형 외팔보 미소 가속도계의 설계, 제작 및 시험)

  • Ko, Jong-Soo;Cho, Young-Ho;Kwak, Byung-Man;Park, Kwan-Hum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.408-413
    • /
    • 1996
  • A self-diagnostic, air-damped, piezoresitive, cantilever-beam microaccelerometer has been designed, fabricated and tested for applications to automotive electronic airbag systems. A skew-symmetric proof-mass has been designed for self-diagnostic capability and zero transverse sensitivity. Two kinds of multi-step anisotropic etching processes are developed for beam thickness control and fillet-rounding formation, UV-curing paste has been used for sillicon-to-glass bounding. The resonant frequency of 2.07kHz has been measured from the fabricated devices. The sensitivity of 195 $\mu{V}$/g is obtained with a nonlinearity of 4% over $\pm$50g ranges. Flat amplitude response and frequency-proportional phase response have been obserbed, It is shown that the design and fabricaiton methods developed in the present study yield a simple, practical and effective mean for improving the performance, reliability as well as the reproducibility of the accelerometers.

A Study on Effect of Quill Accumulator upon Performance of Motor-driven Cylinder Lubricator in a Large Two-stroke Diesel Engine (대형 2행정 디젤기관용 모터구동 실린더 주유기의 성능에 미치는 퀼 어큐뮬레이터의 영향에 관한 연구)

  • Bae, Myung-Whan;Ok, Hyun-Jin;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.115-125
    • /
    • 2007
  • Minimizing the cylinder wear and the consumption rate of cylinder oil in a large two-stroke marine diesel engine is of great economic importance. In Korea, a motor-driven cylinder lubricator for a large two-stroke marine diesel engine manufactured by $W{\ddot{a}}rtsil{\ddot{a}}$ Switzerland Co., Ltd. was first developed by authors through the joint research of industry-university in 2002. The characteristic of the developed product is that can control automatically the oil feed rate to a load fluctuation by the motor drive and the offset cam. The performance of the product is not also inferior to the conventional one. For manufacturing the reliable and useful products, however, it is necessary to investigate further characteristics and improve the performance of a cylinder lubricator. In this study, the effect of quill with and without accumulator on maximum discharge pressure, delivery delay duration and oil feed rate relative to motor revolution speed using plunger stroke as a parameter is experimentally investigated by using the developed cylinder lubricator. It is found that the maximum discharge pressure with accumulator is higher than that of no accumulator as plunger stroke and motor revolution speed are elevated, and the delivery delay duration with accumulator is shorter than that of no accumulator as plunger stroke and motor revolution speed are increased. Also, oil feed rate with accumulator is less than that of no accumulator except for a plunger stroke of 2 mm as plunger stroke and motor revolution speed are raised.

HCCI Combustion of DME in a Rapid Compression and Expansion Machine (급속압축팽창기를 이용한 DME의 HCCI 연소)

  • Sung, Yong-Ha;Jung, Kil-Sung;Choi, Byung-Chul;Lim, Myung-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.8-14
    • /
    • 2007
  • Compression ignition of homogeneous charges in IC engines indicates possibilities of achieving the high efficiency of DI diesel engines with low level of NOx and particulate emissions. The objectives of this study are to further understand the characteristics of the HCCI(Homogeneous charge compression ignition) combustion and to find ways of extending the rich HCCI operation limit in an engine-like environment. DME fuel is supplied either in the form of premixture with air or directly injected in the combustion chamber of a rapid compression and expansion machine under the conditions of various equivalence ratio and injection timing. The cylinder pressure is measured and the rate of heat release is computed from the measured pressure for the analysis of the combustion characteristics. The experimental data show that the RCEM can operate without knock on mixtures of higher equivalence ratio, when DME is directly injected in the combustion chamber than introduced as a fraction of a perfect or nearly perfect premixture. Very early fuel injection timings usually employed in HCCI operation are seen to have only insignificant effects in control of ignition timing.

The Characteristics of Exhausted Soot Particles from a Common-Rail Direct Injection Diesel Engine by TIRE-LII (커먼레일 직접분사식 디젤엔진에서 시분해 레이저 유도 백열법을 이용한 매연입자의 배출 특성)

  • Kim, Gyu-Bo;Han, Hwi-Young;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.78-85
    • /
    • 2007
  • Recently, diesel vehicles have been increased and their emission standards have been getting strict. The emission of diesel vehicles contains numerous dangerous compounds, especially particulate matters cause a serious environmental pollutant and affect to human health seriously. Thousands of studies have already reported that particulate matters are associated with respiratory and cardiovascular diseases, and death. Due to these, it is necessary to measure the soot concentration and soot particle size in laboratory flames or practical engines to recognize the soot formation, and develop the control strategies for soot emission. In this study, the characteristics of exhausted soot particle size and volume fraction from 2.0L CRDI diesel engine have been investigated as varying engine speed and load. Laser induced incandescence has been used to measure soot concentration. Time-resolved laser induced incandescence has been used to determine soot particle size in the engine. The soot volume fraction is increased as increasing engine load but soot volume fraction is decreased as increasing engine speed. The primary particle size is distributed about $35nm{\sim}60nm$ at each experimental conditions.

Characteristics of Icing Phenomenon with Droplet of an Injector for Liquid Phase LPG Injection System (LPG 액상분사식 인젝터에서 후적에 의한 아이싱 특성 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.9-16
    • /
    • 2007
  • Since the liquid phase LPG injection(LPLI) system has an advantage of higher power and lower emission characteristics than the mixer type fuel supply system, many studies and applications have been conducted. However, the heat extraction, due to the evaporation of liquid fuel, causes not only a dropping of LPG fuel but also icing phenomenon that is a frost of moisture in the air around the nozzle tip. Because both lead to a difficulty in the control of accurate air fuel ratio, it can result in poor engine performance and a large amount of HC emissions. The experimental investigation was carried out on the bench test rig in this study. It was found that n-butane, that has a relatively high boiling point($-0.5^{\circ}C$), was a main species of droplet composition and also found that the droplet problem was improved by the use of a large inner to outer bore ratio nozzle whose surface roughness is smooth. The icing phenomena were decreased when the an engine head temperature was increased, although a large amount of icing deposit was still observed in the case of $87^{\circ}C$. Also, it was observed that the icing phenomenon is improved by using anti-icing bushing.