• Title/Summary/Keyword: automotive control

Search Result 2,031, Processing Time 0.031 seconds

A Study on the Design of Electronic Control Unit for Antilock Brake System (전자제어식 미끄럼 방지 제동장치의 제어기 설계에 관한 연구)

  • Ha, Yeon-Chul;Cho, Jeong-Mok;Shin, Byung-Chul;Hwang, Don-Ha;Park, Doh-Young;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2345-2347
    • /
    • 2000
  • ABS(Antilock Brake System) prevents the wheels from "locking" and improve "handling" during braking. Currently, safety and environmental issues are a major concern in the automotive industry. ABS has become the vital brake system. ABS is composed of sensors for wheel speed, a pressure modulator for controlling the brake pressures in the wheel brake cylinders, and an electronic control unit(ECU) which evaluates the signals from the wheel speed sensors and converts these to commands to control the pressure of modulator. In this paper, ECU developed for commercial vehicles is described. Detection of wheel slip, control algorithms of ABS, and diagnosis method of ECU are presented.

  • PDF

Utilization of Active Diodes in Self-powered Sensorless Three-phase Boost-rectifiers for Energy Harvesting Applications

  • Tapia-Hernandez, Alejandro;Ponce-Silva, Mario;Olivares-Peregrino, Victor Hugo;Valdez-Resendiz, Jesus Elias;Hernandez-Gonzalez, Leobardo
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1117-1126
    • /
    • 2017
  • The main contribution of this paper is the use of sensorless active diodes to generate the gate signals for a three-phase boost-rectifier with a self-powered control scheme. The sensorless operation is achieved making use of the gate control signals generated by the active diode schemes on each of the switching devices using a pulse width half-controlled boost rectifier modulation technique (PWM-HCBR). The proposed scheme synchronizes the gate control signals with a three phase voltage supply. Autonomous operation is obtained making use of the output DC bus to feed the control circuitry, the active diodes and the driver circuitry. The three-phase boost-rectifier is supplied by a three-phase permanent magnet electric generator powered by a solar concentrator dish with variable voltage and variable frequency conditions. Experimental results report an efficiency of up to 94.6% for 25 W and an input of 3.6 V peak per phase with 450.

A Study on the Electrical and Electronic Architecture of Electric Vehicle Powertrain Domain through Big Data Analysis (빅데이터 분석을 통한 전기차 파워트레인 도메인 전기전자 아키텍처 연구)

  • Kim, Do Kon;Kim, Woo Ju
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.47-73
    • /
    • 2022
  • Purpose The purpose of this study is to select the electronic architecture concept of the powertrain domain of the electronic platform to be applied to electric vehicles after 2025. Previously, the automotive electrical and electronic architecture was determined only by trend analysis, but the purpose was to determine the scenario based on the data and select it with clear evaluation indicators. Design/methodology/approach This study identified the function to be applied to the powertrain domain of next-generation electric vehicle, estimated the controller, defined the function feature list, organized the scenario candidates with the controller list and function feature list, and selected the final architecture scenario. Findings According to the research results, the powertrain domain of electric vehicles was selected as the architectural concept to apply the DCU (Domain Control Unit) and VCU (Vehicle Control Unit) integrated architecture to next-generation electric vehicles. Although it is disadvantageous or equivalent in terms of cost, it was found to be excellent in most indicators such as stability, security, and hardware demand.

A Novel Technique for Tuning PI-Controllers in Induction Motor Drive Systems for Electric Vehicle Applications

  • Elwer Ayman Saber
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.322-329
    • /
    • 2006
  • In the last decade, the increasing restrictions imposed on the exhaust emissions from internal combustion engines and traffic limitations have increased the development of electrical propulsion systems for automotive applications. The goal of electrical and hybrid vehicles is the reduction of global emissions, which in turn leads to a decrease in fuel resource exploitation. This paper presents a novel approach for control of Induction Motors (IM) using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the Proportional Integral Controller (PI-Controller). The overall system is simulated under various operating conditions. The use of PSO as an optimization algorithm makes the drive robust and insensitive to load variation with faster dynamic response and higher accuracy. The system is tested under variable operating conditions. The simulation results show a positive dynamic response with fast recovery time.

The Position Decision Comparison Experiment of Hall and Photo Sensors in the Linear Stage (홀 센서와 포토 센서를 이용하는 선형 스테이지에서 위치결정 비교 실험)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.157-161
    • /
    • 2015
  • For machining systems having a high precision positioning with a long stroke, it is necessary to examine the repeatability of reference position decisions. Though ball-screw driven linear stages equipped with encoders have high precision feed drivers and a long stroke, they have some limitations for reference position decisions if they have not been equipped accurate home sensors. High precision machining technology has become one of the most important aspects of the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. This study is performed to experimentally compare the repeatability for home position decisions in the case of photo sensors and hall sensors as a home switch of the ball-screw driven linear stage.

Detection of Calibration Patterns for Camera Calibration with Irregular Lighting and Complicated Backgrounds

  • Kang, Dong-Joong;Ha, Jong-Eun;Jeong, Mun-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.746-754
    • /
    • 2008
  • This paper proposes a method to detect calibration patterns for accurate camera calibration under complicated backgrounds and uneven lighting conditions of industrial fields. Required to measure object dimensions, the preprocessing of camera calibration must be able to extract calibration points from a calibration pattern. However, industrial fields for visual inspection rarely provide the proper lighting conditions for camera calibration of a measurement system. In this paper, a probabilistic criterion is proposed to detect a local set of calibration points, which would guide the extraction of other calibration points in a cluttered background under irregular lighting conditions. If only a local part of the calibration pattern can be seen, input data can be extracted for camera calibration. In an experiment using real images, we verified that the method can be applied to camera calibration for poor quality images obtained under uneven illumination and cluttered background.

Performance Analysis of CAN-FD Based Network Against Network Topology (네트워크 토폴로지에 따른 CAN-FD 통신 영향성 분석)

  • Seo, Sukhyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.351-358
    • /
    • 2017
  • The most common communication interface for automotive electronic control devices is CAN (Controller Area Network). Sine CAN was first adopted to Daimler vehicles in 1991, all of automobile manufacturers use the CAN communication for in-vehicle networks. However, as the number of electronic control devices connected to the CAN network rapidly increases, the CAN protocol reaches the limit of technology. To overcome this limitation, Bosch introduced the new communication protocol, that is CAN-FD (Flexible Data-rate). In this paper, we analyze the characteristics and limitations of CAN-FD communication according to the topology under the in-vehicle wiring harness environment designed based on the existing classic CAN communication.

A STUDY ON THE ENGINE PERFORMANCE OF A SPARK IGNITION ENGINE ACCORDING TO THE IGNITION ENERGY

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 2014
  • The more or less homogeneous fuel-air mixture that exists at the end of the compression process is ignited by an electric ignition spark from a spark plug shortly before top dead center. The actual moment of ignition is an optimization parameter; it is adapted to the engine operation so that an optimum combustion process is obtained. Brake mean effective pressure (BMEP) of the spark ignition energy control device (IECD) than conventional spark system at the stoichiometric mixture is increased about 9%. For lean burn engine, the lean limit is extended about 25% by using the IECD. It was considered the stability of combustion by the increase of flame kernel according to the high ignition energy supplies in initial period and discharge energy period lengthen by using the IECD.

Fault Tolerant Actuator for Steer-By-Wire Application

  • Mutschler P.;Krautstrunk A.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.741-745
    • /
    • 2001
  • Reliability and safety of steer-by-wire concepts can be achieved by redundant designs. This paper discusses the design of a fault tolerant concept for a force feedback actuator with a standard three-phase PMSM. In contrast to usual drives, the phases of the machine are separated electrically. This design allows driving the machine with two instead of three phases in case of a fault. A superimposed torque controller adjusts the influence of fault currents and torque harmonics in two-phase operation and guarantees smooth torque at the steering wheel

  • PDF

Slip Control Strategy for an Automatic Transmission Vehicle

  • Lee, Chinwon;Kukhyun Ahn;Lee, Jang-Moo;Lim, Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.521-527
    • /
    • 2003
  • Modern automatic transmissions equip torque converters with lock-up clutches to reduce the energy loss of hydraulic systems. Instead of simply engaging the clutch disks, the new technology of clutch slip has been developed to improve the overall efficiency of power transmission. There are two major problems with the clutch slip system. The first is how to keep the slip between the two disks within a small range and the second is when to start or stop the slip. In this paper, the second problem is discussed in view of the vehicle economy. With a simple vehicle dynamic model, the fuel economy is calculated to determine the lock-up strategy. Then the lock-up strategy is developed for a slip schedule.