• Title/Summary/Keyword: automotive control

Search Result 2,031, Processing Time 0.025 seconds

Effects of Two-Stage Injection on Combustion and Exhaust Emission Characteristics in a HCCI Engine (2단분사법에 따른 예혼합압축착화엔진의 연소 및 배기특성)

  • Kook, Sang-Hoon;Park, Cheol-Woong;Choi, Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.32-39
    • /
    • 2004
  • HCCI (Homogeneous Charge Compression Ignition) combustion has a great advantage in reducing NOx (Nitrogen Oxides) and PM (Particulate Matter) by lowering the combustion temperature due to spontaneous ignitions at multiple sites in a very lean combustible mixture. However, it is difficult to make a diesel-fuelled HCCI possible because of a poor vaporability of the fuel. To resolve this problem, the two-stage injection strategy was introduced to promote the ignition of the extremely early injected fuel. The compression ratio and air-fuel ratio were found to affect not only the ignition, but also control the combustion phase without a need for the intake-heating or EGR (Exhaust Gas Recirculation). The ignition timing could be controlled even at a higher compression ratio with increased IMEP (Indicated Mean Effective Pressure). The NOx (Nitrogen Oxides) emission level could be reduced by more than 90 % compared with that in a conventional DI (Direct Injection) diesel combustion mode, but the increase of PM and HC (Hydrocarbon) emissions due to over-penetration of spray still needs to be resolved.

Development of Misfire Detection Using Spark-plug (스파크플러그를 이용한 실화감지에 관한 연구)

  • 채재우;이상만;정영식;최동천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.27-37
    • /
    • 1997
  • Internal combustion engine is the main source of environmental pollutants and therefore better technology is required to reduce harmful elements from the exhaust gases all over the world. Especially, harmful elements from the exhaust gases are caused by incomplete combustion of mixture inside the engine cylinder and this abnormal combustion like misfire or partial burning is the direct cause of the air pollution and engine performance degradation. the object of this research is to detect abnormal combustion like misfire and to keep the engine performance in the optimal operating state. Development of a new system therefore could be applied to a real car. To realize this, the spark-plug in a conventional ignition system is used as a misfire detection sensor and breakdown voltage is analyzed. In this research, bias voltage(about 3kV) was applied to the electrodes of spark-plug and breakdown voltage signal is obtained. This breakdown voltage signal is analyzed and found that a combustion phenomena in engine cylinder has close relationship with harmonic coefficient K which was introduced in this research. Newly developed combustion diagnostic method( breakdown voltage signal analysis) from this research can be used for the combustion diagnostic and combustion control system in an real car.

  • PDF

A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel (LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구)

  • Lee, Min-Ho;Jeong, Dong-Soo;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.

Dynamic Characteristics Analysis of Four Wheel Steering Vehicles Using Nonlinear Tire Model (비선형 타이어모델을 이용한 4WS 자동차의 주행특성 해석)

  • 김형내;김석일;김동룡;김건상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.110-119
    • /
    • 1997
  • Four wheel steering(4WS) systems which can control the lateral and yaw motions of vehicles by steering front and rear wheels simultaneously, have been regarded as effective for improving the stability and handing performance of vehicles. However, since the 4WS systems depend only on the lateral force of tire, they have some limitation due to the nonlinear characteristics of tire related with the saturation phenomenon of lateral force to the slip angle of tire in a near-limit-performance maneuvering range. In this study, in other to evaluate the effect of nonlinear characteristics of tire on the dynamic performance of vehicles, a new concept for driving the cornering stiffness of nonlinear tire by using the "Magic Formula" tire model is proposed. In addition, the nonlinear 4WS vehicle model is constructed based on the proposed cornering stiffness of nonlinear tire. It is noted from simulation that the nonlinear characteristics of tire affect greatly on the 4WS vehicle performance.rformance.

  • PDF

Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines (연료 분사 특성이 가솔린 엔진 HC 배출에 미치는 영향)

  • 우영민;배충식;이동원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • During cold operation, fuel injection in the intake port directly contributes to the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA(Phase-Doppler. Anemometer). A 6-hole injector was found to produce finer spray than single hole injector. Using a purpose-built wall, the wetted fuel was measured, which was mostly affected by wall temperature. HC emissions were measured in a production engine varying coolant temperature$(20~80^{\circ}C)$, also with respect to the different types of injectors. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect by different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

Study of HSDI Diesel Engine Development for Low Fuel Consumption (HSDI 디젤 엔진 연비 저감 개발에 대한 연구)

  • Chun, Je-Rok;Yu, Jun;Yoon, Kum-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.138-143
    • /
    • 2006
  • Modification of injector, oil ring tension reduction and oil pump rotor re-matching with optimization of relevant engine control parameters could drive fuel consumption reduction of HSDI diesel engine. A 5 holes injector was replaced with a 6 holes with smaller nozzle hole diameter and 1.5 k factor, and evaluated in a view of fuel economy and emission trade-offs. With introducing smaller nozzle hole diameter injector, PM(Particulate Matter) was drastically decreased for low engine load and low engine rpm. Modification of oil pump and oil ring was to reduce mechanical friction and be proved to better fuel economy. Optimization of engine operating conditions was a great help for the low fuel consumption. Influence of the engine operating parameters· including pilot quantity, pilot interval, air mass and main injection timing on fuel economy, smoke and NOx has been evaluated with 14 points extracted from NEDC(New European Driving Cycle) cycle. The fuel consumption was proved to $7\%$ improvement on an engine bench and $3.7\%$ with a vehicle.

Vehicle Orientation Estimation by Using Magnetometer and Inertial Sensors (3축 자기장 센서 및 관성센서를 이용한 차량 방위각 추정 방법)

  • Hwang, Yoonjin;Choi, Seibum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.408-415
    • /
    • 2016
  • The vehicle attitude and sideslip is critical information to control the vehicle to prevent from unintended motion. Many of estimation strategy use bicycle model or IMU integration, but both of them have limits on application. The main purpose of this paper is development of vehicle orientation estimator which is robust to various vehicle state and road shape. The suggested estimator use 3-axis magnetometer, yaw rate sensor and lateral acceleration sensor to estimate three Euler angles of vehicle. The estimator is composed of two individual observers: First, comparing the known magnetic field and gravity with measured value, the TRIAD algorithm calculates optimal rotational matrix when vehicle is in static or quasi-static condition. Next, merging 3-axis magnetometer with inertial sensors, the extended Kalman filter is used to estimate vehicle orientation under dynamic condition. A validation through simulation tools, Carsim and Simulink, is performed and the results show the feasibility of the suggested estimation method.

FPGA-based Traffic Message Delivery System for Car-to-car Communications Using Visible Light Communication Link (가시광 통신링크를 이용한 FPGA기반 차량 메시지 전송 시스템)

  • Kim, Jong-Young;Cho, Eunbyeol;Hwang, Sung-Jo;Park, Bong-Seok;Lee, Chung Ghiu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.386-391
    • /
    • 2016
  • A traffic message delivery system using visible light communication(VLC) link has been demonstrated. The system is proposed to deliver simple traffic messages between cars at low speed. The message set is programmed in an FPGA-based digital board and one of the messages is sent to the other car. Considering the outdoor and indoor environments, the effects of sunlight and fluorescent lamps on received signal waveforms are described. The delivered message is successfully recovered over 2 meter. The link for message delivery can be concatenated.

The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine (승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향)

  • Roh, Hyun-Gu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

Spray Behavior Characteristics of Injector Used for HC-DeNOx Catalyst System in the Transparent Exhaust Manifold (모사 배기관 내 HC-DeNOx 촉매용 인젝터의 분무 거동 특성)

  • Lee, Dong-Hoon;Oh, Jung-Mo;Jeong, Hae-Young;Lee, Ki-Hyung;Yeo, Kwon-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.54-60
    • /
    • 2007
  • A new method that optimizes a control of hydrocarbon (HC) addition to diesel exhaust gas for HC type DeNOx catalyst system has been developed. These catalysts are called as the HC-DeNOx catalyst in this paper. The system using HC-DeNOx catalyst requires a resonable quantity of hydrocarbons addition in the inlet gas of the catalyst, because the HC concentration in a diesel engine is so low that the HC is not sufficient for NOx conversion. Generally ambient temperature in the exhaust manifold is $250{\sim}350^{\circ}C$, so spray behavior in this case is different from that of any other condions. This research shows spray behavior of injected hydrocarbons in the transparent exhaust manifold.