• Title/Summary/Keyword: automotive control

Search Result 2,031, Processing Time 0.025 seconds

Effect of Cooled-EGR on the Characteristics of Performance and Exhaust in a HCCI Diesel Engine (균일 예혼합 압축 착화 디젤 엔진의 성능 및 배출물 특성에 미치는 Cooled-EGR 효과)

  • Lee, Chang-Sik;Yoon, Young-Hoon;Kim, Myung-Yoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.35-41
    • /
    • 2005
  • The effects of cooled-ECR on the characteristics of combustion and exhaust emissions were investigated in a single cylinder HCCI diesel engine The premixed charge (gasoline or diesel) was obtained with premixing chamber and high-pressure (5.5MPa) injection system. Exhaust pressure control and cooled ECR system were used in order to reduce pressure fluctuation and to mix the exhaust gas well with the fresh intake air. The experimental results show that NOx emissions from conventional diesel engine are steeply decreased by HCCI diesel combustion with cooled-EGR in both case of gasoline and diesel premixing. But soot emissions are rapidly increased with the increase of ECR rate. The recycled exhaust gas increased the ignition delay of mixture and decreased maximum combustion pressure. HC and CO emissions of HCCI combustion are increased with ECR rate.

Deduction of a Simplified Model for the Hydraulic Actuator for a Low-band Type Suspension System (능동제어식 현가계의 유압 구동장치에 대한 단순화 모델 유도)

  • 김동윤;홍예선;박영필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.27-38
    • /
    • 1994
  • In this paper, a simplified model of a hydraulic actuator system for a low-band type active suspension system is derived. To reduce the order of model, time constants of each chamber in hydraulic system are neglected except that of an accumulator. And the dynamics of a spool in the pressure control valve is regarded as a first-order system. The step response and the frequency response of the simplified second-order simulation model exhibit a good agreement with those of the actual system as well as those of the tenth-order simulation model. It is possible to simplify the tenth-order model to the second-order one. The low-band type active suspension model is built up by combining of a quarter car model test rig to testify the validity of the simplified model. The experimental results of suspension characteristics show that the simplified second-order hydraulic actuator model is reasonable to describe the dynamics of the actual hydraulic actuator system for a low-band type active suspension system.

  • PDF

Flow Measurements at the Exit of a Throttle Valve in Gasoline Engines (가솔린 엔진의 스로틀 밸브 출구에서 유동측정)

  • Kim, Sung-Cho;Kim, Cheol;Choi, Jong-Geon;Wee, Hwa-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • The flow and combustion patterns have been investigated inside the gasoline engine cylinder with the swirl or tumble flow, whereas the air flow characteristics, which are generated in the part of intake system before entering into the intake manifold, have not been known completely. It is necessary to analyze the flow field in the intake system consisting of air rater, throttle valve and intake manifold. The throttle valve, used to control the intake air flow rate, is important because it makes various mass flow rate and flow patterns. Three-dimen-sional How characteristics such as velocities, turbulent intensities and Reynolds shear stresses are measured by the hot wire anemometer at the exit of the throttle valve with the variation in the valve opening angle($15^{\circ}$, $45^{\circ}$, $75^{\circ}$ and $90^{\circ}$) and the Reynolds numbers (45000, 70000 and 140000). There are a lot of changes in flow characteristics at $75^{\circ}$ due to the large recirculation flow comparing with those of the other cases, and the streamwise velocity is especially enforced strongly below the valve shaft. The other component velocities are relatively large near the centerline parallel to the valve shaft. The effects of the Reynolds number on the flow field are not severe.

Development of BLDC Motor for HEV Engine Cooling and Battery Cooling System (하이브리드 차량의 엔진 및 배터리 냉각팬 구동용 BLDC모터 개발)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • Hybrid Electric Vehicles(HEVs) have seriously come into prevalence recently as car manufacturers and consumers have become more aware of the environmental and economic problems of conventional vehicles. For the alternative power-train and battery cooling systems in HEVs, an effective thermal management system is required, and many automakers are interested in using Brushless DC(BLDC) motors for cooling fans for the overall traction unit's performance and energy saving capability. This paper presents the development status of BLDC motors as major parts of the power-train, i.e. the engine cooling and battery cooling fans of HEVs. A design that uses BLDC motors for the power-train and each battery cooling fan, is successfully implemented through using electro-magnetic analysis, and prototype BLDC motors are examined. As experimental results, the BLDC motors achieved an efficiency of 85% as engine cooling fans and 72% as a battery thermal management fan motor. The electric cogging noise is significantly reduced by changing the skew of the slot pitch angle and optimizing the magnetic shape.

A Study on Development Process of Evaporating Diesel Spray (증발디젤분무의 발달 과정에 관한 연구)

  • Yeom, Jeong-Kuk;Park, Jong-Sang;Chung, Sung-Sik;Ha, Jong-Yul;Kim, Si-Pom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.141-146
    • /
    • 2007
  • In this study, the effects of change in ambient gas viscosity on spray structure have been investigated in the high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Emissions of diesel engines can be reduced by the control of the mixture formation process. Therefore, this study examines the evaporating spray structure in the constant volume chamber. The viscosity of ambient gas was selected as the experimental parameter, is changed from 21.7 mPa s to 32.1 mPa s by changing in ambient gas temperature. In order to obtain images of the liquid and vapor-phase of injected spray, exciplex fluorescence method was used in this study. The liquid and vapor-phase images were taken with 35mm still camera and CCD camera, respectively. Consequentially, it could be confirmed that the distribution of vapor concentration is more uniform in the case of the ambient gas with high viscosity than in that of the ambient gas with low viscosity.

Implementation of Node Mapping-based FlexRay-CAN Gateway for In-vehicle Networking System (차량 네트워크 시스템을 위한 노드 매핑 기반 FlexRay-CAN 게이트웨이 구현)

  • Bae, Yong-Gyung;Kim, Man-Ho;Lee, Suk;Lee, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.37-45
    • /
    • 2011
  • As vehicles become more intelligent, in-vehicle networking (IVN) systems such as controller area network (CAN) or FlexRay are essential for convenience and safety of drivers. To expand the applicability of IVN systems, attention is currently being focused on the communication between heterogeneous networks such as body networking and chassis networking systems. A gateway based on message mapping method was developed to interconnect FlexRay and CAN networks. However, this type of gateways has the following shortcomings. First, when a message ID was changed, the gateway must be reloaded with a new mapping table reflecting the change. Second, if the number of messages to be transferred between two networks increase, software complexity of gateway increases very rapidly. In order to overcome these disadvantages, this paper presents FlexRay-CAN gateway based on node mapping method. More specifically, this paper presents a node mapping based FlexRay-CAN gateway operation algorithm along with the experimental evaluation for ID change.

A Study on the Ultra Lean Combustion Characteristics of the BMW N53 GDI Engine (BMW N53 직접분사식 가솔린 엔진의 초희박 연소특성에 관한 연구)

  • Kim, Hong-Suk;Oh, Jin-Woo;Kim, Sung-Dea;Park, Chul-Wong;Lee, Seok-Whan;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.82-89
    • /
    • 2011
  • Ultra lean combustion with stratified air-fuel mixture is one of the methods that can improve fuel economy of gasoline engines. The aim of this study is to show that how much fuel economy is improved and what are differences in engine control of the ultra lean combustion compared with stoichiometric combustion. In this study, the BMW N53 GDI engine, which is one of ultra lean combustion GDI engines introduced in the market recently, was tested at various engine operating conditions. Results indicated that fuel consumption rates were improved by 11.9~25.8% by the ultra lean combustion compared with stoichiometric combustion. It was also found that multiple fuel injection, multiple spark, early intake valve opening, and large vlave overlap duration were the features of the ultra lean combustion for combustion stability and emission improvement.

A HYDROGEN FUELLED V-8 ENGINE FOR CITY-BUS APPLICATION

  • Sierens, R.;Verhelst, S.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • Hydrogen is seen as one of the important energy vectors of the next century. Hydrogen as a renewable energy source, provides the potential for a sustainable development particularly in the transportation sector. Hydrogen driven vehicles reduce both local as well as global emissions. The laboratory of transporttechnology (University of Gent) converted a GM/Crusader V-8 engine for hydrogen use. Once the engine is optimised, it will be built in a low-floor midsize hydrogen city bus for public demonstration. For a complete control of the combustion process and to increase the resistance to backfire (explosion of the air-fuel mixture in the inlet manifold), a sequential timed multipoint injection of hydrogen and an electronic management system is chosen. The results as a function of the engine parameters (ignition timing. injection timing and duration, injection pressure) we given. Special focus is given to topics related to the use of hydrogen as a fuel: ignition characteristics (importance of electrode distance), quality of the lubricating oil (crankcase gases with high contents of hydrogen), oxygen sensors (very lean operating conditions), noise reduction (configuration and length of inlet pipes). The advantages and disadvantages of a power regulation only by the air to fuel ratio (as for diesel engines) against a throttle regulation (normal gasoline or gas regulation) are examined. Finally the goals of the development of the engine are reached: power output of 90 kW, torque of 300 Nm, extremely low emission levels and backfire-safe operation.

  • PDF

Estimation of Wall Wetting Fuel at Intake Port and Model Based Prediction A/F in a S.I. Engine (가솔린 엔진에서 액막 연료량 추정 및 이를 이용한 공연비 예측에 관한 연구)

  • 황승환;이종화;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.116-122
    • /
    • 1999
  • According to the stringent exhaust emission regulation, precise control of air fuel ratio is one of the most important issues on gasoline engine. Although many researches have been carried out to identify the fuel transport phenomena in a port fueled gasoline engine, complexity of fuel film behavior in the intake port makes it difficult. The fuel film behavior was investigated recently by using visualization method and these gave us qualitative understanding. The purpose of this study is to estimate of wall wetting fuel in the intake port and the inducted fuel mass was predicted by using wall wetting fuel model . The model coefficient($\alpha$,$\beta$) and fuel film mass on the port wall were determined from measured in-cylinder HC concentration using FRFID after injection off. The fuel film mass was increased, but $\alpha$(ratio of directly inducted fuel mass into cylinder from injected fuel mass) was decreased with increasing load at the same engine speed. $\beta$is nearly constant value(0.8~0.9). when injected fuel mass is varied at 1500rpm , the calculated air fuel ratio using well wetting fuel model was nearly the same as measured by UEGO.

  • PDF

Effects of Injection Pressure and Injection Angle on Spray Characteristics in Loop Scavenged Type 2-stroke Engines (루프소기형태의 2행정기관에서 분사압력 및 분사각도에 따른 분무특성 연구)

  • Chae, S.;Ryou, H. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.165-176
    • /
    • 1996
  • The flow field and spray characteristics for loop scavenged type 2stroke engine having pancake shape was numerically computed using KIVA-Ⅱ code. The cylinder has 1intake port, 2side intake ports and 1exhaust port with induced flow angle 25 deg. In engine calculation, the chop techniques is used to strip or add planes of cells across the mesh adjacent to the TDC and the BDC(ports parts) for preventing the demand of exceed time during the computation, providing a control on cell height in the squish region. The modified turbulent model including the consideration of the compressibility effect due to the compression and expansion of piston was also used. The case of 25 deg.(injection angle) which is opposite to scavenging flow direction shows better the distribution of droplets and the evaporation rate of droplets compared to other cases(0 deg., - 25 deg.). When injection pressure was increased, the spray tip penetration became longer. When injection pressure was increased, the interaction between the upward gas velocity and spray droplets strongly cause. Thus the breakup of droplets is strongly occurred and the evaporation rate of droplets was found to be better.

  • PDF