• Title/Summary/Keyword: automotive control

Search Result 2,031, Processing Time 0.029 seconds

A Study on Reliability Compliance Test based on Thermal Fatigue Accelerated Test for CVVL BLDC Motor (CVVL BLDC 모터의 열피로 가속시험을 통한 수명보증시험 설계)

  • Lee, San-Hoon;Park, Sang-Wook;Kim, Min-Geiun;Seon, Han-Geol;Hong, Sung Ryeul;Han, Man-Seung
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • Purpose : The demand for higher fuel economy vehicles has helped develop fuel-efficient vehicles such as a CVVL called continuous variable valve lift. Existing CVVL has been applying DC type motor to control intake valve, but recently some car parts manufacturers have been developing a BLDC type CVVL motor for improvements of endurance performance. The purpose of this study is to find the potential failure mechanism of the CVVL BLDC moto in early stage of development based on the design properties and design the accelerated life test model. Methods : CVVL BLDC is consist of brushs, coil, magnetic, PCB, bearing and so on. Each component has a latent failure mechanism caused by temperature, humidity, vibration. By analysis result of the failure mechanism, thermal fatigue is the most important factor of a durability of CVVL BLDC motor. So, we designed a new accelerated life test model for guarantee of the CVVL BLDC motor. Results : A crack occurred on via hole in test using the conditions we designed, so we did change the design to avoid this failure. The via hole dimension is changed a little larger, as a result we achieve improvements in reliability of the CVVL BLDC motor. By applying various kinds and extreme level of stresses, we can find the operating limits of products. Conclusion : In thesis, We analyzed the failure mechanism of CVVL BLDC and designed an accelerated life test method to give a guarantee for reliability. Based on the test results, we could improve the reliability of developments by change of design.

Light-weight Design with a Simplified Center-pillar Model for Improved Crashworthiness (측면충돌 성능 향상을 위한 고강도 강판의 적용 및 단순 센터필러 모델의 최적경량설계)

  • Bae, Gi-Hyun;Huh, Hoon;Song, Jung-Han;Kim, Se-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.112-119
    • /
    • 2006
  • This paper is concerned with the light-weight design of a center-pillar assembly for the high-speed side impact of vehicle using advanced high strength steels(AHSS). Steel industries continuously promote the ULSAB-AVC project for applying AHSS to structural parts as an alternative way to improve the crashworthiness and the fuel efficiency because it has the superior strength compared to the conventional steel. In order to simulate deformation behavior of the center-pillar assembly, a simplified center-pillar model is developed and parts of that are subdivided employing tailor-welded blanks(TWB) in order to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. Factorial design is carried out aiming at the application and configuration of AHSS to simplified side-impact analysis because it needs tremendous computing time to consider all combinations of parts. In optimization of the center-pillar, S-shaped deformation is targeted to guarantee the reduction of the injury level of a driver dummy in the crash test. The objective function is constructed so as to minimize the weight and lead to S-shape deformation mode. Optimization also includes the weight reduction comparing with the case using conventional steels. The result shows that the AHSS can be utilized effectively for minimization of the vehicle weight and induction of S-shaped deformation.

DEVELOPMENT OF OCCUPANT CLASSIFICATION AND POSITION DETECTION FOR INTELLIGENT SAFETY SYSTEM

  • Hannan, M.A.;Hussain, A.;Samad, S.A.;Mohamed, A.;Wahab, D.A.;Ariffin, A.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.827-832
    • /
    • 2006
  • Occupant classification and position detection have been significant research areas in intelligent safety systems in the automotive field. The detection and classification of seat occupancy open up new ways to control the safety system. This paper deals with a novel algorithm development, hardware implementation and testing of a prototype intelligent safety system for occupant classification and position detection for in-vehicle environment. Borland C++ program is used to develop the novel algorithm interface between the sensor and data acquisition system. MEMS strain gauge hermatic pressure sensor containing micromachined integrated circuits is installed inside the passenger seat. The analog output of the sensor is connected with a connector to a PCI-9111 DG data acquisition card for occupancy detection, classification and position detection. The algorithm greatly improves the detection of whether an occupant is present or absent, and the classification of either adult, child or non-human object is determined from weights using the sensor. A simple computation algorithm provides the determination of the occupant's appropriate position using centroidal calculation. A real time operation is achieved with the system. The experimental results demonstrate that the performance of the implemented prototype is robust for occupant classification and position detection. This research may be applied in intelligent airbag design for efficient deployment.

Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology (자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술)

  • Chang, InSung;Cho, YongJoon;Park, HyunSung;So, DeugYoung
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.

An Experimental Study on the Emission Characteristics of GTL Fuel with Injection Timings in CRDi Single Cylinder Engine (커먼레일 단기통 엔진에서 GTL 연료의 분사시기 변화에 따른 배출물 특성)

  • Kim, Byoung-Jun;Lee, Yong-Gyu;Choi, Kyo-Nam;Jeong, Dong-Soo;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.181-187
    • /
    • 2008
  • Recently, alternative fuels are drawing more attentions due to the increasing need for lower emission characteristics and fuel consumption rate in automotive engines. The GTL(gas to luquid) is the one of most favored candidates. It has higher cetane number(more than 75) and almost negligible sulphur and aromatic contents. Therefore, enhanced emission characteristics are expected even in the application in diesel engines without any modification. In this study, the cylinder pressure and heat release, emission characteristics with fuel injection timings are compared between diesel and GTL fuel in the single cylinder diesel engine. Noticeable reduction in PM, THC and CO emission are observed due to lower sulphur and aromatic contents in GTL. Also, the ignition delay decreased due to higher cetane number of GTL, which slightly decreased the amount of NOx emissions. With the retards of main injection timing, NOx decreases more for the case of GTL, while the level of THC and CO emissions still remains lower than the case of diesel. Therefore, there is much room for the control of injection timing for NOx reduction without sacrificing THC and CO emissions. With the retards of main injection timing, Small size distribution of PM became lager and there amount increased. But from all conditions, size distribution of PM for the case GTL was lower than Diesel.

Analysis of Abnormal Vibration by a Damper Clutch Operation in Low Speed Ranges of A/T Vehicles (A/T차량의 저속 영역에서 댐퍼클러치 작동에 따른 이상 진동 해석)

  • Shin, Changwoo;Kim, Beomsoo;Lee, Daeheung;Jeong, Jongryeol;Lim, Wonsik;Cha, Sukwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.157-164
    • /
    • 2013
  • A damper clutch in automatic transmission systems has some advantages of fuel economy and dynamic performance. Although a damper clutch operation improves a fuel economy of the vehicles, a positive operation of a damper clutch in a low vehicle speed induces abnormal vibration. This paper analyzed one of reasons for abnormal vibration by a damper clutch operation in low engine speed ranges. A simulation model was designed to confirm the effects of a damper clutch operation under unstable regions of an engine. A theoretical analysis was carried out about an engine operation stability. Simulation was conducted to depict abnormal vibration by a damper clutch operation in unstable regions of an engine performance curve. The effects of an engine operation region for abnormal vibration by a damper clutch was investigated according to the range and the slope of unstable regions. As a result of simulations, a damper clutch operation would be better to avoid an engine unstable regions.

An Experiment Study on the Combustion Characteristics with BD20 according to Ultrasonic Energy Irradiation Duration and Injection Delay in a Diesel Engine (초음파 에너지 조사 시간과 분사지연에 따른 BD20의 디젤기관 연소특성에 관한 실험 연구)

  • Im, Seok-Yeon;Lee, Ho-Gil;Ryu, Jeong-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.38-46
    • /
    • 2008
  • An object of this study is to understand the correlation between the characteristics of an engine performance and combustion characteristics, applying BD20 fuel reformed by ultrasonic energy irradiation to diesel engines. Before conducting the main experiment, an experiment was performed to determine the optimum injection timimg of reformed BD20 by ultrasonic energy irradiation. To control the duration of the ultrasonic energy irradiation, the capacity of an ultrasonic energy fuel supply system was tested with 550cc and 1100cc chambers. As the result of the analysis of the regular BD20 and reformed BD20 by ultrasonic energy irradiation, the BSFC and the Power of the reformed BD20 was improved 3% and 6%, respectively compared to those of non-irradiated BD20. When the fuel injection timing was delayed by $5^{\circ}$, the engine power was improved by 3%, and the BSFC was improved by 2%. The maximum cylinder pressure of reformed BD20 was improved by a maximum of 6% in comparison to that of regular BD20, and demonstrated a synergistic effect of 3% by delaying the injection timing $5^{\circ}$.

A Survey of Embedded Software Testing for Automotive Standard Platform (지능형 자동차용 임베디드 플랫폼 소프트웨어 테스팅 연구)

  • Jo, Hyun-Chul;Piao, Shiquan;Cho, Hui-Sup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.73-79
    • /
    • 2010
  • The number of electronic embedded software in vehicle system is ever increasing for years. As a result, the electronic control units have been growing dramatically, and it is required to mutual link between these units. Due to separate API each and every embedded platform, it is difficult to develop and integrate in automotive industry. The AUTOSAR project consists suppliers and manufacturers, and the partnership is a standardized platform to establish and develop an industry standard. On the previous works, we implemented the RTE generated module design based on AUTOSAR architecture. This paper specifically focuses on the testing of the development tool that generates RTE source code. The result satisfied a need for a RTE requirements and AUTOSAR methodology in a vehicle applications.

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.

Cracking Behavior Under Contact Stress in Densely Coated Porous Engineering Ceramics (치밀층으로 코팅된 다공성 엔지니어링 세라믹스에서의 접촉응력에 의한 균열 거동)

  • Kim, Sang-Kyum;Kim, Tae-Woo;Kim, Do-Kyung;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.554-560
    • /
    • 2005
  • The engineering ceramic needs the properties of high strength, hardness, corrosion-resistance and heat-resistance in order to withstand thermal shock or applied nonuniform stresses without failure. The densely coated porous ceramics can be used for machine component, electromagnetic component, bio-system component and energy-system component by their high-performances from superior coating properties and light-weight characteristics due to the structure including pore by itself. In this study we controlled the porosity of silica and alumina, $8.2\~25.4\%$ and $23.4\~36.0\%$, respectively, by the control of sintering temperature and starting powder size. We made bilayer structures, consisting of a transparent glass coating layer bonded to a thick substrate of different porous ceramics by a thin layer of epoxy adhesive, facilitated observations of crack initiation and propagation. The elastic modulus mismatch could be controlled using different porous ceramics as the substrate layer. Then we applied 150 N force using WC sphere with a radius of 3.18 mm by Hertzian indentation. As a result, the crack initiation in the coating layer was delayed at lower porosity in the substrate layer, and the damage in the coating layer was relatively smaller at the bilayer structure coated on higher elastic substrate.