• Title/Summary/Keyword: automotive communication network

Search Result 87, Processing Time 0.023 seconds

Performance Analysis of CAN-FD Based Network Against Network Topology (네트워크 토폴로지에 따른 CAN-FD 통신 영향성 분석)

  • Seo, Sukhyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.351-358
    • /
    • 2017
  • The most common communication interface for automotive electronic control devices is CAN (Controller Area Network). Sine CAN was first adopted to Daimler vehicles in 1991, all of automobile manufacturers use the CAN communication for in-vehicle networks. However, as the number of electronic control devices connected to the CAN network rapidly increases, the CAN protocol reaches the limit of technology. To overcome this limitation, Bosch introduced the new communication protocol, that is CAN-FD (Flexible Data-rate). In this paper, we analyze the characteristics and limitations of CAN-FD communication according to the topology under the in-vehicle wiring harness environment designed based on the existing classic CAN communication.

Basic Design of ECU Hardware for the Functional Safety of In-Vehicle Network Communication (차량 내 네트워크 통신의 기능안전성을 위한 하드웨어 기본 설계)

  • Koag, Hyun Chul;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1373-1378
    • /
    • 2017
  • This paper presents a basic ECU(Electronic Control Unit) hardware development procedure for the functional safety of in-vehicle network systems. We consider complete hardware redundancy as a safety mechanism for in-vehicle communication network under the assumption of the wired network failure such as disconnection of a CAN bus. An ESC (Electronic Stability Control) system is selected as an item and the required ASIL(Automotive Safety Integrity Level) for this item is assigned by performing the HARA(Hazard Analysis and Risk Assessment). The basic hardware architecture of the ESC system is designed with a microcontroller, passive components, and communication transceivers. The required ASIL for ESC system is shown to be satisfied with the designed safety mechanism by calculation of hardware architecture metrics such as the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric).

자동차 CALS-ANX를 중심으로

  • 오우진
    • Proceedings of the CALSEC Conference
    • /
    • 1999.07a
    • /
    • pp.301-311
    • /
    • 1999
  • ANX Mission Statement "To provide the automotive industry with a robust, global network infrastructure that enables an emerging set of electronic communication services′

  • PDF

Load Allocation Strategy for Command and Control Networks based on Interdependence Strength

  • Bo Chen;Guimei Pang;Zhengtao Xiang;Hang Tao;Yufeng Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2419-2435
    • /
    • 2023
  • Command and control networks(C2N) exhibit evident multi-network interdependencies owing to their complex hierarchical associations, interleaved communication links, and dynamic network changes. However, the existing command and control networks do not consider the effects of dependent nodes on the load distribution. Thus, we proposed a command and control networks load allocation strategy based on interdependence strength. First, a new measure of interdependence strength was proposed based on the edge betweenness, which was followed by proposing the inter-layer load allocation strategy based on the interdependence strength. Eventually, the simulation experiments of the aforementioned strategy were designed to analyze the network invulnerability with different initial load capacity parameters, allocation model parameters, and allocation strategies. The simulation indicates that the strategy proposed in this study improved the node survival rate of the interdependent command and control networks model and successfully prevented cascade failures.

Design of CAN Communication Interface possible for Error Detection that use for Embedded System (오류검출이 가능한 임베디드 시스템용 CAN통신 인터페이스 설계)

  • Ahn, Jong-Young;Kim, Sung-Su;Kim, Young-Ja;Park, Sang-Jung;Hur, Kang-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.69-74
    • /
    • 2010
  • Now the CAN(controller Area Network) is using electronic modules as a serial communication which is very robust to noise. Especially the CAN is using for automotive part that very popular in which automotive electronic control module, engine controller unit, sensor modules, etc. but the CAN has the order of priority to linking node and also has fault confinement so using in these features that is applied to in factory automation product line. The CAN communication is basically very robust to electric noise so varied applying to others part. In this paper, we suggest to CAN interface for embedded system that is possible for error detection using two CAN nodes on Hi-speed, full-CAN.

Design and Implementation of Vehicle Control Network Using WiFi Network System (WiFi 네트워크 시스템을 활용한 차량 관제용 네트워크의 설계 및 구현)

  • Yu, Hwan-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.632-637
    • /
    • 2019
  • Recent researches on autonomous driving of vehicles are becoming very active, and it is a trend to assist safe driving and improve driver's convenience. Autonomous vehicles are required to combine artificial intelligence, image recognition capability, and Internet communication between objects. Because mobile telecommunication networks have limitations in their processing, they can be easily implemented and scale using an easily expandable Wi-Fi network. We propose a wireless design method to construct such a vehicle control network. We propose the arrangement of AP and the software configuration method to minimize loss of data transmission / reception of mobile terminal. Through the design of the proposed network system, the communication performance of the moving vehicle can be dramatically increased. We also verify the packet structure of GPS, video, voice, and data communication that can be used for the vehicle through experiments on the movement of various terminal devices. This wireless design technology can be extended to various general purpose wireless networks such as 2.4GHz, 5GHz and 10GHz Wi-Fi. It is also possible to link wireless intelligent road network with autonomous driving.

Embedded System Design of Automotive Media Server Platform with the MOST Interface (MOST 인터페이스를 갖는 차량용 미디어 서버 플랫폼에 대한 임베디드 시스템 설계)

  • Kwak, Jae-Min;Park, Pu-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.262-267
    • /
    • 2006
  • For growing need for the multimedia application in the vehicles, the MOST protocol has been focused on. The MOST protocol supports three kinds of communication modes; short control message, asynchronous packets, and reserved synchronous stream data. Because of a variety of transportation, the MOST is suitable for various applications in vehicle environment. In this paper, we implemented embedded system which is MOST-enabled AMS platform and tested the network communication operation through the control port and the synchronous channel of the source port. We implemented the prototype platforms which communicate each other on the MOST's POF network. Moreover we implemented the DivX decoder attached AMS platform and verified the operation by transferring the video stream and the control messages through the MOST network.

  • PDF

A Study on Distributed Message Allocation Method of CAN System with Dual Communication Channels (중복 통신 채널을 가진 CAN 시스템에서 분산 메시지 할당 방법에 관한 연구)

  • Kim, Man-Ho;Lee, Jong-Gap;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.1018-1023
    • /
    • 2010
  • The CAN (Controller Area Network) system is the most dominant protocol for in-vehicle networking system because it provides bounded transmission delay among ECUs (Electronic Control Units) at data rates between 125Kbps and 1Mbps. And, many automotive companies have chosen the CAN protocol for their in-vehicle networking system such as chassis network system because of its excellent communication characteristics. However, the increasing number of ECUs and the need for more intelligent functions such as ADASs (Advanced Driver Assistance Systems) or IVISs (In-Vehicle Information Systems) require a network with more network capacity and the real-time QoS (Quality-of-Service). As one approach to enhancing the network capacity of a CAN system, this paper introduces a CAN system with dual communication channel. And, this paper presents a distributed message allocation method that allocates messages to the more appropriate channel using forecast traffic of each channel. Finally, an experimental testbed using commercial off-the-shelf microcontrollers with two CAN protocol controllers was used to demonstrate the feasibility of the CAN system with dual communication channel using the distributed message allocation method.

Implementation of OSEK/VDX for Automotive Body Control System

  • Kim, Kee-Woong;Kim, Tae-Yol;Kim, Jae-Goo;Lim, Hong-Joon;Ryu, Syeh-Yung;Lee, Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.178.2-178
    • /
    • 2001
  • Today, many electronic devices and ECUs (Electronic Control Units) are used in the automotive body control systems. It becomes more common that these devices exchange data with others through an in-vehicle network. Automobile manufacturers concentrate their efforts on development of body control systems based on networks in order to save cost and to increase flexibility and safety. OSEK/VDX has been founded as a joint project in German and French automotive industry aiming at an industry standard for an open-ended architecture for distributed control units in vehicles OSEK/VDX consists of Communication (specification of data exchange within and between control units), Network Management specification of Configuration determination and monitoring and Operating System (specification of realtime executive for ECU software ...

  • PDF

Design and Verification of Automotive LIN Controller (차량용 LIN 제어기의 설계 및 검증)

  • Lee, Jong-Bae;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.333-336
    • /
    • 2016
  • LIN (local interconnect network) is a standard low-speed serial communication protocol, and it was developed as an efficient sub-bus for automotive electronic modules. In this paper, a LIN controller was implemented in Verilog HDL, based on LIN ver. 2.2A. The implemented LIN controller was verified in FPGA, and it can be supplied as an IP to be integrated into SoC system. Its size is about 2,300 gates when synthesized in 0.18um technology.