• Title/Summary/Keyword: automotive coatings

Search Result 69, Processing Time 0.021 seconds

Field Try-out of Tailored Door Inner Panel (테일러드 도어인너 패널의 현장 트라이아웃)

  • 이종문;김상주;금영탁
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.193-199
    • /
    • 2001
  • Forming more than two parts of sheet metal in a single stamping operation lowers production costs, reduces weight, and heightens dimensional accuracy. The tailored blank (TB) is a laser-welded or mash-seam-welded sheet metal with different thicknesses, different strengths, or different coatings. Recently, automotive manufacturers have been interested in tailored blanks because of their desire to improve the rigidity, weight reduction, crash durability, and cost savings. Therefore the application to auto-bodies has increased. However, as tailored blanks do not behave like un-welded blanks in press forming operations, stamping engineers no longer rely on conventional forming techniques. Field try-outs are very important manufacturing processes for an economic die-making. In the field try-outs, the rounded geometries of tool and the drawbead shape and size in die face are generally modified when the forming defects can not be removed by the adjustment of forming process parameters. In this study, the field try-outs of tailored door inner panel are introduced and evaluated. The behaviours of laser tailored blank associated with different thickness combinations in the forming process of door inner panel are described focusing on terms of experimental investigations on the formability.

  • PDF

Effect of Fusing Treatment on Anti-Corrosion Characteristics of Ni-based Self-flux Alloy Coating (니켈기 자융성 합금 코팅의 방식특성에 미치는 후열처리의 영향)

  • Kim, Tae-Yong;Kim, Jae-Dong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.79-85
    • /
    • 2013
  • This study aims at investigating the effect of a fusing treatments on anti-corrosion characteristics of Ni-based self-flux alloy coating. Ni-based coatings were fabricated by flame spray process on steel substrates, and fusing treatments were performed using a vacuum furnace at $800^{\circ}C$ $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. After fusing treatments, corrosion tests were carried out using potentiostat/galvanostat at solution with pH 2 and pH 6. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. Fusing-treated coating at $1100^{\circ}C$ showed more favorable anti-corrosion characteristics than as-sprayed coating. Anticorrosive effect of fusing-treated coating at solution with pH 2 was relatively greater than at solution with pH 6. Fusing-treated coating at $1100^{\circ}C$ showed the most excellent anti-corrosion characteristics.

Evaluation of the Properties of Seawater Materials by Heat Treatment after TIG Welding (해수용 재료의 TIG용접후 열처리에 따른 특성 평가)

  • Bae, Dong-Su;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.517-523
    • /
    • 2021
  • In this study, in the selection of materials for the elements of a small plant, those with high resistance to corrosion are selected and the material properties of coatings for corrosion prevention are evaluated. In addition, corrosion characteristics and material analysis were performed on the welded part, and the hardness characteristics of the welded part, heat-affected part, and the base metal were evaluated. In the case of the post-weld-heat-treated(PWHT) specimen, the corrosion resistance of STS 316 was lower than that of the specimen without the PWHT due to the formation of intergranular carbide. As a result of evaluating the distribution of the hardness of the weld before and after the PWHT, the hardness of the specimen after the PWHT increased by about 20 Hv. As a result of the corrosion test on the welded specimen, the weight loss tended to increase as the time increased. In the case of the PWHT specimen, the corrosion resistance tended to be significantly lower than that of the specimen without PWHT due to the formation of intergranular carbide.

Solution deposition planarization for IBAD-MgO texture template

  • Ko, Kyeong-Eun;Kwon, O-Jong;Bea, Sung-Hwan;Yoo, Ja-Eun;Park, Chan;Oh, Sang-Soo;Park, Young-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.17-19
    • /
    • 2010
  • In this work, the optimized process condition of chemical solution deposition which is used to planarize the surface of the metal tape (which is used to grow IBAD-MgO texture template) was investigated. $Y_2O_3$ films were dip-coated on the surface of the unpolished metal tape as the seed and barrier layer. The effects of $Y_2O_3$ concentration of the solution (0.5wt.%, 1.3wt.%, 2.8wt.%, 5.6wt.%) and the number of coatings on the surface morphology and barrier capability against the diffusion from the metal tape were examined. The surface morphology and the thickness of the film were observed using the scanning electron microscope and the atomic force microscope. The presence of elements in metal tape on the film surface was analyzed using the auger electron spectroscopy. The $Y_2O_3$ film thickness increases with increasing the $Y_2O_3$ concentration in the solution, and the surface became smoother with increasing the number of coating cycles. The best result was obtained from the $Y_2O_3$ film coated 4 cycles using 2.8wt.% solution.

Synthesis and Curing Behavior of UV-curable Polycarbonate-based Polyurethane Methacrylate : Effect of Polyol Molecular Weight, Contents of Photoinitiator and Monomers on the Flexibility and Properties (자외선 경화형 폴리카보네이트계 폴리우레탄 메타아크릴레이트의 합성과 경화거동 : 폴리올 분자량, 광개시제 및 모노머 함량이 유연성과 물성에 미치는 영향)

  • Park, Eun-Suk;Hwang, Hyeon-Deuk;Park, Cho-Hee;Lee, Yong-Hee;Moon, Je-Ik;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.12 no.2
    • /
    • pp.47-55
    • /
    • 2011
  • UV-curable coatings have been used in various industries due to their advantages such as high mechanical property, good solvent resistance, fast curing process and low volatile organic compounds. However, a lack of flexibility of UV-cured films is a weak point for the pre-coated system of roll-to-roll process. In this study, UV-curable polycarbonate-based methacrylates were synthesized with polycarbonate diol, isophorone diisocyanate and 2-hydroxyethylmethacrylate to improve flexibility of the UC-cured films. The effects of polyol molecular weight, content of photoinitiator and monomers on the UV-curing behavior, flexibility and properties were investigated. The UV-curing behavior was measured by a photo-DSC, the pendulum hardness, tensile strength, viscoelastic properties were also evaluated.

Effects of Interphase Condition and Short-fiber Content on the Fatigue Properties of Reinforced Rubber (계면상 조건과 단섬유 함유량이 강화고무의 피로특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.10-17
    • /
    • 2000
  • The fatigue properties of short nylon66 fiber reinforced Chloroprene rubber have been investigated as functions of interphase conditions and fiber content. The spring constant of rubber decreased about 21% after the fatigue test. On the contrary, that of reinforced rubber increased in all cases. The changing rate of spring constant for reinforced rubber decreased with increasing fiber content. This means that the better interphase condition, the smaller changing rate of spring constant. Temperature of matrix increased about 2.5 times and one of reinforced rubber showed 1.7∼2 times up after the test. The changing rate of temperature for reinforced rubber during fatigue test decreased with increasing fiber content. It is found that the better interphase condition, the smaller changing rate of specimen temperature at the same fiber content. Double coatings of bonding agent 402 and rubber solution became the best interphase model in this study. And, we have investigated the possibility of applying short-fiber reinforced rubber to automotive engine mount rubber, bush and stopper.

  • PDF

A study on the Cutting Force Variation Comparison between Low CBN and Coated Low CBN Tools in Turning of SCM440 (Low CBN 코팅공구의 SCM440 선삭시 절삭력변화에 관한 연구)

  • Bang, Hong-In;Kim, Tea-Young;Oh, Sung-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • In recent years, high hardness steel is used for most of the material in many areas including aircraft, nuclear power, space exploration and automotive parts. Low CBN tools are widely used in industrial field which can effectively process high hardness steel of HRC 45 or harder. The results of this study demonstrated, when high hardness steel, SCM440 is turned with Low CBN tools coated with TiN and TiAlN coatings respectively, that both the thrust force and cutting force tends to increase with more increase in cutting force than thrust force, as the feed rate increases at constant cutting speed. In addition, the size of the cutting force and thrust force does not change with the increased cutting speed at the same feed rate, but the tool life is reduced if the cutting speed is increased to shorten the machining time. Therefore, it is recommended to limit the cutting speed at 250 m/min maximum or less. Furthermore, comparing the cutting force of the three tools at the same cutting condition, Tin coating tool showed the smallest cutting force and Low CBN was the next, and the TiAlN coating tools showed the largest cutting force.

Analysis of suppressed thermal conductivity using multiple nanoparticle layers (다중층 나노구조체를 통한 열차단 특성 제어)

  • Tae Ho Noh;Ee Le Shim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • In recent years, energy-management studies in buildings have proven useful for energy savings. Typically, during heating and cooling, the energy from a given building is lost through its windows. Generally, to block the entry of ultraviolet (UV) and infrared (IR) rays, thin films of deposited metals or metal oxides are used, and the blocking of UV and IR rays by these thin films depends on the materials deposited on them. Therefore, by controlling the thicknesses and densities of the thin films, improving the transmittance of visible light and the blocking of heat rays such as UV and IR may be possible. Such improvements can be realized not only by changing the two-dimensional thin films but also by altering the zero-dimensional (0-D) nanostructures deposited on the films. In this study, 0-D nanoparticles were synthesized using a sol -gel procedure. The synthesized nanoparticles were deposited as deep coatings on polymer and glass substrates. Through spectral analysis in the UV-visible (vis) region, thin-film layers of deposited zinc oxide nanoparticles blocked >95 % of UV rays. For high transmittance in the visible-light region and low transmittance in the IR and UV regions, hybrid multiple layers of silica nanoparticles, zinc oxide particles, and fluorine-doped tin oxide nanoparticles were formed on glass and polymer substrates. Spectrophotometry in the UV-vis-near-IR regions revealed that the substrates prevented heat loss well. The glass and polymer substrates achieved transmittance values of 80 % in the visible-light region, 50 % to 60 % in the IR region, and 90 % in the UV region.

Tribological Behavior Analysis of WC-Ni-Cr + Cr3C2 and WC-Ni-Cr + YSZ Coatings Sprayed by HVOF (고속 화염 용사법으로 제조된 WC계 Cr3C2 코팅과 WC계 YSZ 코팅의 마찰 및 마모 거동 연구)

  • Tae-Jun Park;Gye-Won Lee ;Yoon-Suk Oh
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.415-423
    • /
    • 2023
  • With the increasing attention to environmental pollution caused by particulate matter globally, the automotive industry has also become increasingly interested in particulate matter, especially particulate matter generated by automobile brake systems. Here, we designed a coating composition and analyzed its mechanical properties to reduce particulate matter generated by brake systems during braking of vehicles. We designed a composition to check the mechanical properties change by adding Cr3C2 and YSZ to the WC-Ni-Cr composite composition. Based on the designed composition, coating samples were manufactured, and the coating properties were analyzed by Vickers hardness and ball-on-disk tests. As a result of the experiments, we found that the hardness and friction coefficient of the coating increased as the amount of Cr3C2 added decreased. Furthermore, we found that the hardness of the coating layer decreased when YSZ was added at 20vol%, but the friction coefficient was higher than the composition with Cr3C2 addition.