• Title/Summary/Keyword: automotive body application

Search Result 99, Processing Time 0.023 seconds

Worst Case Scenario Generation on Vehicle Dynamic Stability and Its Application (주행 안정성을 고려한 최악 상황 시나리오 도출 및 적용)

  • Jung, Dae-Yi;Jung, Do-Hyun;Moon, Ki-Hyun;Jeong, Chang-Hyun;Noh, Ki-Han;Choi, Hyung-Jeen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2008
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios mentioned above and its application in simulation basis. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of either roll angle or yaw rate. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition (ex.2-inch wheel lift). Additionally, as an application, the worst case steering maneuver is acquired for the vehicle to operate with a simple ESP system. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle system both with an intelligent safety control system and without it.

Intelligent Resistance Spot Welding System and its Automotive Body Application (지능형 저항 점 용접 시스템의 자동차 차체 적용)

  • Jo, Yong-Jun;Yu, Seong-Pil;Jang, In-Seong;Lee, Hui-Beom
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.77-79
    • /
    • 2006
  • While RSW(Resistance Spot Welding) have been the most successful sheet metal joining process in automotive industry, there are certain qualify issues due to the control system and its application process. Recent materials and coatings make the process more complicated resulting in new challenges for quality welds. In this research, an intelligent RSW system with adaptive control algorithm is introduced to overcome typical RSW issues and its applications to automotive body assembly are presented.

  • PDF

Manufacturing Preparations in the New Car Development for an Automotive Body Shop by Digital Manufacturing Technologies (차체공장 디지털생산 기술 적용을 통한 신차 개발 생산준비 업무 수행)

  • 노상도;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.118-126
    • /
    • 2003
  • Digital Manufacturing is a technology facilitating effective developments and agile productions of the product via digital computer models representing physical and logical schema and the behavior of the real manufacturing systems including manufacturing resources, environments and products. For the successful application of this technology, a digital factory as a well-designed and an integrated environment is essential. In this paper, we constructed the sophisticated digital factory of a Korean automotive company's body shop, and conducted precise simulations of unit cell, lines and the whole factory for the collision check, the production flow analysis and the off-line programming. We expect that this digital factory of the body shop helps us achieve great savings in time and cost for many manufacturing preparation activities of the new car development.

Crashworthiness Design Concepts for the Improved Energy Absorbing Performance of an Aluminum Lightweight Vehicle Body (알루미늄 경량 차체의 충돌에너지 흡수 성능 향상을 위한 설계 개선 연구)

  • 김범진;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.155-160
    • /
    • 2003
  • For the weight reduction of vehicle body up to 20∼30% compared to the conventional monocoque steel body·.in-white, most automotive manufacturers have attempted to develop the aluminum intensive body-in-white using an aluminum space frame. In this paper, the crush tests and simulations for the aluminum extrusions filled with the structural from are performed to evaluate the collapse characteristics of that light weighted material. From these studies. the effectiveness of structural for is evaluated in improving automotive crashworthiness. In order to improve the improve energy absorption capability of the aluminum space frame body, safety design modifications are performed and analyzed based on the suggested collapse initiator concepts and on the application of the aluminum extrusions filled with structural foam. The effectiveness of these design concepts on the frontal and side impact characteristics of the aluminum intensive vehicle structure is investigated and summarized.

An application of grid analysis technique and forming limit diagram in development of automotive body panels (자동차 차체 판넬의 개발에 있어서 변형 측정법 및 성형 한계도의 이용)

  • 전기찬;유동진;이정우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 1989
  • 본 고에서는 당사에서 이용하고 있는 그릿드 마킹법에 의한 변형의 측정과 성형 한계도의 이용에 관하여 간략하게 소개하고자 한다.

  • PDF

Application of Condensed Joint Matrix Method to the Joint Structure of Vehicle Body (축약 행렬법을 적용한 차체 결합부 해석)

  • 서종환;서명원;양원호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.9-16
    • /
    • 1998
  • The joint characteristics are necessary to be determined in the early stage of the vehicle body design. Researches on identification of joints in a vehicle body have been performed until the recent year. In this study, the joint characteristics of vehicle struct- ure were expressed as condensed forms from the full joint stiffness and mass matrix. The condensed joint stiffness and mass matrix were applied to typical T-type and Edge-type joints, and the usefulness was confirmed. In addition, those were applied to center pillar and full vehicle body to validate the practical application.

  • PDF

Effect of Coating Weight of Electroplated Sheet Steels on Quality Performances for Automotive Body Panels (자동차용 전기도금강재의 도금재착항별 품질생성)

  • 김태영;진영술
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.2
    • /
    • pp.57-65
    • /
    • 1992
  • Increasing demands of high corrosion resistant sheet steels for the automotive body panels have been leading to a tendency toward heavier coatings of electroplated sheet steels. The specimens were prepared from lab-scale electroplating simulator with various coating weights of zinc, zinc-iron and zinc-nickel coated sheet steels and evaluated in the light of the application for the automotive body panels. Corrosion resistances by sacrificial action were improved with increasing coating weights for all electroplated sheet under survey, but blistering resistances of pure zinc coated sheet steels were not as much. On the other hand, the adhesions of heavy alloy coatings showed poor powdering performances by the external compressive or tensile forces.

  • PDF

EVALUATION OF ROAD-INDUCED NOISE OF A VEHICLE USING EXPERIMENTAL APPROACH

  • Ko, K.-H.;Heo, J.-J.;Kook, H.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.21-30
    • /
    • 2003
  • In this paper a systematic test procedure for evaluation of road-induced noise of a vehicle and guidelines for each test are presented. Also, a practical application of the test procedure to a small SUV is presented. According to the test procedure, all the tests were performed to evaluate road-induced booming noise that is in low frequency range. First of all the information on characteristics of road-induced noise was obtained through baseline test. Coupling effects between body structure and acoustic cavity of a compartment were obtained by means of modal tests for a structure and an acoustic cavity. Local stiffness of joint areas between chassis system and car-body was determined by test for measurement of input point inertance. Noise sensitivities of body joints to operational forces were obtained through test for measurement of noise transfer functions. Operational deflection shapes made us analyze behaviors of chassis system under running condition and then find sources of noise due to resonance of the chassis system. Finally, Principal Component Analysis and Transfer Path Analysis were utilized to investigate main paths of road-induced noise. In order to evaluate road-induced booming noise exactly, all of tests mentioned above should be performed systematically.

Effective application of insulations and deadeners improving the vehicle interior noise (차실내 소음 개선을 위한 차음재 및 제진재의 효과적 적용)

  • 이정권;김인동;이영섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.68-78
    • /
    • 1992
  • Vibration and vibro-acoustic characteristics of body panels enclosing the vehicle interior cabin are tested and analyzed for effective application of sound proofing materials. A set of deadener and insulation packages are proposed based on the experimentally evaluated and categorized contributions of noise radiating panels. The suggested packages are applied to a prototype vehicle, and a refined acoustic quality is achieved. A systematic experimental procedure proposed in this study can be a good tool in tuning the acoustic quality of prototype vehicles within a limited development period.

  • PDF