• Title/Summary/Keyword: automobiles

Search Result 1,039, Processing Time 0.028 seconds

Study on Rubber Damping Characteristics of Vibration Reduction Mounts for UAVs (무인기용 진동 저감 마운트의 고무 감쇠 특성에 대한 연구)

  • Chan-Whi Kang;Hun-Suh Park;Dong-Gi Kwag
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.927-933
    • /
    • 2023
  • In modern times, with advances in semiconductor technology such as electronic devices, the need to improve the quality of onboard equipment with advanced electronic parts in automobiles, drones, airplanes, projectiles, and various fields, and reduce the impact of various disturbances on onboard equipment is becoming more important. Vibration control through hardware must be determined to prevent damage and improve quality to equipment operating in various environments such as automobiles, drones, airplanes, and projectiles. This study focuses on the study of vibration damping systems to protect mounted equipment from various disturbances and improve stability. Dynamic characteristics analysis, including compressive stiffness, damping rate, and frequency response, and vibration characteristics in the frequency domain of rubber dampers were identified through FEM analysis to identify the characteristics of rubber dampers. Through these findings, we would like to present the criteria for selecting a suitable rubber damper under various disturbance conditions.

Trends and Perspective for Eco-friendly Composites for Next-generation Automobiles (차세대 자동차용 친환경 복합재료의 동향 및 전망)

  • Eunyoung Oh;Marcela Maria Godoy Zuniga;Jonghwan Suhr
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • As global issues and interest in the environment increase, the transition to eco-friendly materials is accelerating in the automobile industry. In the automotive industry, eco-friendly composite materials are mainly used in various interior and exterior components, reducing the reliance on traditional petroleum-based materials. In particular, natural fiber composites help reduce fuel consumption and greenhouse gas emissions by making vehicles lighter. Additionally, they boast superior thermal properties and durability compared to non-recyclable composite materials, making them suitable for automotive interior parts. Furthermore, reduced production costs and sustainability are key advantages of natural fiber composites. The eco-friendly composites market is expected to grow to $86.43 billion at a CAGR of 15.3% from 2022 to 2030, and the natural fiber composites market is predicted to grow at a CAGR of 5.3% from 2023 to 2028 to $424 million. In this review paper, we explore research trends in nextgeneration natural fiber composite materials for automobiles and their application in the actual automobile industry.

RESULTS OF FUNCTIONAL SIMULATION FOR ABS WITH PRE-EXTREME CONTROL

  • IVANOV V.;BELOUS M.;LIAKHAU S.;MIRANOVICH D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2005
  • The creation of automotive systems of active safety with intelligent functions needs the use of new control principles for the wheel and automobile. One of such directions is the pre-extreme control strategy. Its aim is the ensuring of wheel's work in pre-extreme, stable area of tire grip wheel slip dependence. The simplest realization of pre-extreme control in automotive anti-lock brake systems consists in the threshold and gradient algorithms. A comparative analysis of these algorithms, which has been made on 'hardware in-the-loop' simulation results of the braking for bus with various anti-lock brake systems (ABS), indicated their high efficiency.

Application of Permanent Magnet Synchronous Machines in Automotive Steering Systems

  • Sebastian Tomy;Islam Mohammad S.;Mir Sayeed
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.111-117
    • /
    • 2005
  • Several of the conventional hydraulic systems in an automobile are now being replaced by more reliable and energy efficient electromechanical systems. Developments in the brushless permanent magnet machine and in the power and control electronics are the key factors responsible for this transformation. These applications brought out some performance challenges associated with the brushless machines. This paper will focus on these challenges to be able to use these machines in such applications. In terms of replacing hydraulic systems with electromechanical systems, steering system is leading the way in automobiles. Currently, steering systems using Electro-hydraulically assisted systems and Electrically assisted (Electromechanical) systems are in the market. Though the Electrically assisted power steering has several advantages over other systems, certain performance and cost challenges delayed the penetration of such systems in to the market.

Environmental Conditions in the Reheating Furnace for High Quality Advanced High Strength Steels for Automobiles

  • Sohn, Il-Ryoung;Chin, Kwang-Geun
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.193-197
    • /
    • 2007
  • It is well known that the development of Advanced High Strength Steels (AHSS) is very important for the automotive industry in order to improve fuel efficiency and the reduction of material costs. However, it is particularly difficult to improve the surface quality of AHSS because the high amount of Si, Al, Mn and Ti etc. in AHSS promote selective oxidation, resulting in surface defects. The reheating process in the hot strip mill would cause severe oxidation because it is carried out at elevated temperatures under aggressive environments. In this study a reheating furnace simulator was developed to investigate oxidation phenomena in the reheating process. The environmental gas for the reheating furnace was made by burning coke oven gas with air in the simulator. The air/fuel ratio is precisely controlled by MFC. Ti oxides are easily formed on grain boundaries and Mn and Si oxides are usually formed in inner grains near the steel surface with a small round shape.

A Study on the Feasibility of the Three Prospective Types of HEV (국내 보급 예정 하이브리드 자동차의 유형별 편익 고찰)

  • Lee, Dong-Jun;Lee, Ye-Ji;Heo, Eun-Nyeong
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.52-60
    • /
    • 2008
  • More people have become interested in hybrid vehicles - which have been heralded as environmentally friendly automobiles - recently as the opening of domestic hybrid vehicle market draws near. Since gasoline, diesel and LPG hybrid vehicles will be produced, a need exists to conduct economic feasibility study of each vehicle type. This research analyzed projected benefits of these hybrid vehicles based on the 1600cc model. There are two categories of benefits: 1) reduced fuel costs for the owners of the vehicles; and 2) reduced environmental pollution cost. We conducted a sensitivity analysis and estimated the domestic consumer fuel costs based on the international oil prices of 100USD, 150USD, and 200USD per barrel. The analysis showed savings of 2 to 4 million Won in fuel cost and 1 to 2 million Won in environmental pollution cost; therefore, the hybrid vehicles are not economically feasible if they are between 3 to 5 million Won more expensive than the conventional internal combustion engine vehicles.

  • PDF

Investigation of Manufacturing Parameters for Non-fibrous Ceramic Brake Pads using Taguchi Method (다꾸치법에 의한 무섬유 세라믹 브레이크 마찰재의 제조변수에 대한 고찰)

  • Yeo Jeong-Gu;Choi Sung-Churl
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.59-66
    • /
    • 2004
  • In the present study, ceramic brake pads without fiber phases were manufactured by the low temperature heat treatment below$ 700 ^{\circ}C$. The manufacturing parameters of ceramic brake pads and those levels were investigated by the analysis results of signal-to-noise ratios, ANOVA based upon the Taguchi method. The ceramic brake pads prepared in the Mg experiment had a friction coefficient of 0.30~0.55 very close to the target coefficient (0.35~0.45) of commercial brake pads utilized in the automobiles. The frictional properties of ceramic brake pads could be stabilized with the adjustment of amounts of lubricating additives. The optimum preparation conditions as well as batch formulations for the fabrication of non-fibrous ceramic brake pads were finally determined using Taguchi method in this study.

Wear for Polisher Brush of EGL Plating Cell using Finite Element Analysis (유한요소해석을 이용한 EGL 도금조 Polisher Brush의 마모예측)

  • Ku, J.K.;Noh, H.G.;Heo, S.C.;Song, W.J.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.342-345
    • /
    • 2009
  • Electro galvanized steel is electroplated cold roller steel for improving corrosion resistance and paintability, and is widely used in automobiles and home appliances. In the electroplating line for manufacturing electro galvanized steel if plating process is carried out with impurity on conductor roll surface, the defects in manufacturing process occurs because of steel fault. For quality, polishing is always required to separate impurity on surface of conductor roll. In this study, finite element analysis of wear for polisher brush is carried out for replaced time of it.

  • PDF

A Study on the Swept Path Width for the Bimodal Tram (바이모달 트램 곡선 선회폭에 관한 연구)

  • Moon, Kyeong-Ho;Chang, Se-Ky;Mok, Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.51-56
    • /
    • 2011
  • The train travels on the track and, thus, the rear wheels precisely follow the paths of the front wheels. On the contrary, in the vehicles running on the road like automobiles, buses and trucks, the front wheels try to drag the rear ones toward them and across the inside of the curve. Off-tracking is defined as the radial offset between the path of the centerline of the front axle and the path of the centerline of the following axle. In the case of the bimodal tram with AWS(all wheel steering), the off-tracking decrease but the rear swing-out values increase because of the rear steering at the reverse phase angle. Thus, in order to determine the swept path width, maximum road width at the minimum turning radius, off-tracking and swing-out should be considered for the bimodal tram. In this paper, trajectory simulations were carried out for the various condition such as front steering, front and rear steering and suppression of swing-out to optimize the swept path width.

  • PDF

A Study on the HALT & Life time Test of the Swirl Control Actuator (자동차 흡기유동제어밸브의 초가속수명시험 및 수명시험을 위한 신뢰성연구)

  • Kim, Sung Ok;Park, Sang Wook;Lee, Jin Sik
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.59-70
    • /
    • 2014
  • The requirements of reliability verification for new products and technology are increasing more and more in accordance with the trend of climate change prevention and GHG reduction technology, functional skills. SCA(Swirl Control Actuator) is the important part of a car intake manifold system. This device generates swirl that is mixing the fuel and air into the engine combustion chamber. This is to improve output for engine and reduce the emission for exhaust. In this article reliability assessment criteria for swirl control actuator for automobiles are established in terms of basic HALT and life time test.