• Title/Summary/Keyword: automobile industry

Search Result 902, Processing Time 0.025 seconds

A Study on the Percentage of Body Fat and Abdominal Obesity of Workers Using Bioelectrical Impedance Analysis (일개 사업장 근로자들의 한방건강검진에서 체성분검사를 통한 체지방률과 복부비만 결과 분석)

  • Park, Young-Sun;Kim, Jong-Dae
    • The Journal of Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.113-123
    • /
    • 2008
  • Objectives: Obesity is chronic condition which can severely influence health. People with a high percentage of body fat (%BF) have high prevalence of hypertension and hypercholesterolemia. Abdominal obesity (AO) seems to play a major role in the development of cardiovascular disease, diabetes and hyperlipidemia. This study investigated the %BF and AO of workers in the automobile manufacturing industry. Methods: The subjects were categorized by sex, age, job class, drinking history and smoking history. %BF and AO were measured by using bioelectrical impedance analysis (Jawon Medical, Seoul, Korea). We analyzed the relationship between age, sex, job class, drinking history, smoking history and %BF and WHR into frequencies, $X^2$-test using the SPSS Ver. 12.0. Results: Regarding the relationship between sex and %BF, AO, there was statistically significant difference as men had a significant higher level of %BF and AO than women. There was a positive correlation between age and both %BF and AO. Workers in their 40s especially ran level of AO up. In job class, office workers were apt to have a higherlevel of %BF and AO than production line workers. %BF and AO of the non-drinker group showed a lower level than the drinker group. On the other hand, the ex-smoker group had higher levels of %BF and AO than the non-smoker or current-smoker groups. Conclusions: The above results showed that men, the advanced in years, office workers, drinkers and ex-smokers had high levels of %BF and AO.

  • PDF

The holons settlement of the processing and assembly system for the human-oriented manufacturing system forming (인간중심의 제조시스템 구축을 위한 가공 및 조립시스템의 holon 설정)

  • Joung, Boum-Jin;Kim, Day-Sung;Kim, Man-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.639-643
    • /
    • 1996
  • The manufacturing system has been changed from labored manual process system, which is managed and operated by managers and operators, to CIMS(Computer Integrated Manufacturing System) for integration of manufacturing, research, development and consumption in the age of diverse customer's needs[6]. However, because it involves the hierarchical system composed of many sub-systems interface and its installation & setup cost is very expensive, CIMS has many difficulties in constructing the durable optimal system that is able to adapt to rapid in-outer circumstance change. So, HMS(Holonic Manufacturing System), the new conceptual manufacturing system having the self-problem-solving and self-organization[11], is instructed to solve these difficulties that it has in these days. The system flexibility in the HMS is able to be ensured, with the integration of human's strong points into mechatronics manufacturing system to reduce interference among sub-systems. In this paper, the manufacturing process rationalization and integration of the assembly line in an automobile industry, has lots of problems in efficiency and productivity, has been studied in an early stage of converting the present state of process system to HMS, which is human-oriented processing system, to improve the line efficiency, system productivity and reliability by using human capability effectively. This paper is derived into the human-oriented & object-oriented holons settlement of the shop floor system composed of processing, assembly and material handling system for the future holonic manufacturing system, which is going to be computer supported control system.

  • PDF

Report on the Vaso-Aging Degree of Workers by SA3000P (SA3000P로 측정된 근로자들의 혈관노화도에 관한 보고)

  • Kim, Seong-Mo;Kim, Dae-Jun;Choi, Bin-Hye
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.1178-1182
    • /
    • 2009
  • This study was designed to analyze the results of Vaso-Aging Degree in Oriental medical examination. The subjects were workers in the automobile manufacturing industry. The subjects consisted of 24,077 industrial workers who had received Oriental medical examination by Oriental medicine and they submitted questionnaires about drinking history and smoking history, during 9 months from March to November. They were categorized by job class, drinking history and smoking history, exercising history. The percentage of Vaso-Aging Degree were measured by using SA3000P(Medicore, Seoul, Korea). We analyzed the relationship between job class, drinking history, smoking history, exercising history and Vaso-Aging Degree using ${\chi}2$-test of the SPSS Ver. 14.0. In job class, Sales personnel were apt to have a higher level of Vaso-Aging Degree than Office workers. And getting older workers are, the higher Vaso-Aging Degree becomes. Vaso-Aging Degree of the Drinker group showed a higher level than the Non-Drinker group. Vaso-Aging Degree of Smoker group were higher than the Non-smoker group. On the other hand, Vafo-Aging Degree of Non-Exerciser group were higher than the Exerciser group. They have to manage Vaso-Aging Degree closely and educate the workers to quit smoking and drinking for their health promotion. Furthermore, continuous health check up needs to be done connectedly.

Characteristics of Surface Hardening of Dies Steel for Plastic Molding using Continuous Wave Md:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 플라스틱성형용 금형강의 표면경화 특성)

  • Shin, Ho-Jun;Yoo, Young-Tae;Oh, Yong-Seak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.71-81
    • /
    • 2009
  • Die steel for plastic molding were used as mold material of automobile parts and electronic component industry. The material of this paper has superior to mechanical properties, such as repair weldability, corrosion resistance and high temperature strength, required mold parts for semitransparent. Laser-induced surface hardening technology is widely adopted to improver fatigue life and wear resistance via localized hardening at the surface of mold parts. The objective of this research work is to investigate on the characteristics of surface hardening of the laser process parameters, such as beam travel speed, laser power and defocsued spot position, for the case of die steel for plastic molding. Lens for surface hardening of large area is plano-convex type with elliptical profile to maintain uniform laser irradiation. According to the experimental results, large size of hardened layer at the surface of die steel for plastic molding was achieved, and microstructure of this layer was lath martensite. Optimal surface status and mechanical property of hardened layer could be obtained at 1095Watt, $0.25{\sim}0.3m/min$, 0mm (focal length: 232mm) for laser power, beam travel speed, and focal position. Where, heat input was $0.793{\times}10^{3}J/cm^2$, and width of hardened layer was 27.58mm.

Experiment of an ABS-type control strategy for semi-active friction isolation systems

  • Lu, Lyan-Ywan;Lin, Ging-Long;Lin, Chen-Yu
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.501-524
    • /
    • 2011
  • Recent studies have discovered that a conventional passive isolation system may suffer from an excessive isolator displacement when subjected to a near-fault earthquake that usually has a long-period velocity pulse waveform. Semi-active isolation using variable friction dampers (VFD), which requires a suitable control law, may provide a solution to this problem. To control the VFD in a semi-active isolation system more efficiently, this paper investigates experimentally the possible use of a control law whose control logic is similar to that of the anti-lock braking systems (ABS) widely used in the automobile industry. This ABS-type controller has the advantages of being simple and easily implemented, because it only requires the measurement of the isolation-layer velocity and does not require system modeling for gain design. Most importantly, it does not interfere with the isolation period, which usually decides the isolation efficiency. In order to verify its feasibility and effectiveness, the ABS-type controller was implemented on a variable-friction isolation system whose slip force is regulated by an embedded piezoelectric actuator, and a seismic simulation test was conducted for this isolation system. The experimental results demonstrate that, as compared to a passive isolation system with various levels of added damping, the semi-active isolation system using the ABS-type controller has the better overall performance when both the far-field and the near-fault earthquakes with different PGA levels are considered.

A Study on RFID Code Structure for Traceability System of Electric Vehicle Batteries (전기자동차 배터리 추적 시스템을 위한 RFID 코드체계 설계에 관한 연구)

  • Kim, Woo-Ram;Chang, Yoon-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.4
    • /
    • pp.95-104
    • /
    • 2013
  • As global warming and depletion of fossil fuel are considered as urgent problems, the development of electric vehicle (EV) is getting more attention by automobile industry. However, the wide adoption of EVs is not coming yet, because of many issues such as long recharging time and high cost of batteries etc. As an alternative solution to the conventional battery charging EV, the idea of battery exchanging EV is introduced. To realize the battery exchanging business model, one should solve the issues of ownership and reliability of battery. To address such issues, the concept of battery sharing should be considered together with good traceability system. In this study, we studied RFID code structure to provide better visibility and traceability for shared EV batteries. The proposed RFID code and code generation system is based on GRAI-96 of EPCglobal and included factors such as chemical, physical, and manufacturing features. The designed code can be also used as the ID of each battery.

Inter-device Mutual Authentication and Formal Verification in Vehicular Security System (자동차 보안시스템에서 장치간 상호인증 및 정형검증)

  • Lee, Sang-Jun;Bae, Woo-Sik
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.205-210
    • /
    • 2015
  • The auto industry has significantly evolved to the extent that much attention is paid to M2M (Machine-to-Machine) communication. In M2M communication which was first used in meteorology, environment, logistics, national defense, agriculture and stockbreeding, devices automatically communicate and operate in accordance with varying situations. M2M system is applied to vehicles, specifically to device-to-device communication inside cars, vehicle-to-vehicle communication, communication between vehicles and traffic facilities and that between vehicles and surroundings. However, communication systems are characterized by potential intruders' attacks in transmission sections, which may cause serious safety problems if vehicles' operating system, control system and engine control parts are attacked. Thus, device-to-device secure communication has been actively researched. With a view to secure communication between vehicular devices, the present study drew on hash functions and complex mathematical formulae to design a protocol, which was then tested with Casper/FDR, a tool for formal verification of protocols. In brief, the proposed protocol proved to operate safely against a range of attacks and be effective in practical application.

The Properties of Plant Fiber and Polyester Blended Nonwoven Fabrics (식물성 섬유와 폴리에스테르 섬유의 혼합 부직포 제조 및 특성 -어저귀, 칡섬유를 중심으로-)

  • Lee, Hye-Ja;Kim, Nam-Eun;Yoo, Hye-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.11
    • /
    • pp.1696-1706
    • /
    • 2009
  • Nonwoven fabrics have been widely used in various fields that include household, industrial, agricultural, medical goods, especially in the automobile industry. In this study, eco-friendly fiber materials were developed and investigated as a substitute material for polyester fibers in nonwovens. To make plant fiber bundles, stems of Indian mallow (IM), and Kuzu vine (KV) were retted; in addition, the non-cellulose component was partially removed. Plant fiber bundles and polyester fibers (P) were blended and needle punched to produce nonwovens. Five kinds of nonwovens were manufactured: P100 (Polyester 100%), IM10 (IM 10% and Polyester 90%), IM20 (IM 20% and Polyester 80%), KV10 (KV 10% and Polyester 90%), and KV20 (KV 20% and Polyester 80%). The color values, surface appearance, tensile strength, elongation, tear strength, abrasion strength, flexstiffness, moisture regain, water or oil absorbency, and static electricity of manufactured nonwovens are investigated. As the blended ratios of IM or KV increased, the brightness of nonwovens decreased compared to that of polyester 100%. Tensile strength, tear strength, abrasion strength, and flexstiffness of IM10 as well as KV10 were higher than those of P100, IM20, and KV20, resulting from the influence of the structure and properties of nonwoven fibers. Moisture regain and water or oil absorbency increased, while static electricity decreased in proportion to the amount of plant fibers. IM or KV and polyester blended nonwovens showed improved properties over P100 that could be substituted for P100 as a novel material for textiles.

Effects of PEO Conditions on Surface Properties of AZ91 Mg Alloy (PEO 처리조건에 따른 마그네슘 합금 AZ91의 표면특성변화에 관한 연구)

  • Park, Kyeong-Jin;Jung, Myung-Won;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.71-77
    • /
    • 2010
  • Mg alloys have been used in automobile industry, aerospace, mobile phone and computer parts owing to low density. However, they have a restricted application because of low mechanical and poor corrosion properties. Thus, improved surface treatments are required to produce protective films. Environmental friendly Plasma Electrolytic Oxidation(PEO) was used to produce protective films on magnesium alloys. PEO process is combined electrochemical oxidation with plasma treatment in the aqueous solution. In this study, the effects of applied voltage and applied current on the surface morphologies were investigated. Also, the effects of Direct Current(DC) and Pulse Current(PC) were compared. PC and constant current control gave the dense coating on the Mg alloy. The potentiodynamic polarization tests were carried out for the analysis of corrosion properties of specimens. The surface hardness was 5 times higher than that of untreated AZ91D.

Effect of Stress Ratio on Fatigue Fracture of a Shot Peening Marine Structural Steel (쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향)

  • PARK KYOUNG-DONG;JIN YOUNG-BEOM;PARK HYOUNG-DONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.43-49
    • /
    • 2004
  • The lightness of components required in the automobile and machine industry necessitates the use of high strength components. In particular, the fatigue failure phenomena, which occurs when using metal, increases the danger to human life and property. Therefore, antifatigue failure technology is an integral part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel, while improving the fatigue strength on surface. Therefore, in this paper, the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in a stress ratio(R=0.1, R=0.3, R=0.6) was investigated, giving consideration to fracture mechanics. By using the methods mentioned above, following conclusions are drawn: (1) The fatigue crack growth rate(da/dN) of the shot-peening material was lower than that of the un-peening material and in stage I, ΔKth, the threshold stress intensity factor of the shot-peen processed material is high in critical parts, unlike the un-peening material. Also m, fatigue crack growth exponent and number of cycle of the shot-peening material, was higher than that of the un-peening material, as concluded from effect of da/dN. (2) Fatigue life shows more improvement in the shot-peening material than in the un-peening material, and the compressive residual stress of surface on the shot-peen processed operate resistance of fatigue crack propagation.