• Title/Summary/Keyword: automatic test

Search Result 1,637, Processing Time 0.03 seconds

Automatic Extraction of Opinion Words from Korean Product Reviews Using the k-Structure (k-Structure를 이용한 한국어 상품평 단어 자동 추출 방법)

  • Kang, Han-Hoon;Yoo, Seong-Joon;Han, Dong-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.470-479
    • /
    • 2010
  • In relation to the extraction of opinion words, it may be difficult to directly apply most of the methods suggested in existing English studies to the Korean language. Additionally, the manual method suggested by studies in Korea poses a problem with the extraction of opinion words in that it takes a long time. In addition, English thesaurus-based extraction of Korean opinion words leaves a challenge to reconsider the deterioration of precision attributed to the one to one mismatching between Korean and English words. Studies based on Korean phrase analyzers may potentially fail due to the fact that they select opinion words with a low level of frequency. Therefore, this study will suggest the k-Structure (k=5 or 8) method, which may possibly improve the precision while mutually complementing existing studies in Korea, in automatically extracting opinion words from a simple sentence in a given Korean product review. A simple sentence is defined to be composed of at least 3 words, i.e., a sentence including an opinion word in ${\pm}2$ distance from the attribute name (e.g., the 'battery' of a camera) of a evaluated product (e.g., a 'camera'). In the performance experiment, the precision of those opinion words for 8 previously given attribute names were automatically extracted and estimated for 1,868 product reviews collected from major domestic shopping malls, by using k-Structure. The results showed that k=5 led to a recall of 79.0% and a precision of 87.0%; while k=8 led to a recall of 92.35% and a precision of 89.3%. Also, a test was conducted using PMI-IR (Pointwise Mutual Information - Information Retrieval) out of those methods suggested in English studies, which resulted in a recall of 55% and a precision of 57%.

Homonym Disambiguation based on Mutual Information and Sense-Tagged Compound Noun Dictionary (상호정보량과 복합명사 의미사전에 기반한 동음이의어 중의성 해소)

  • Heo, Jeong;Seo, Hee-Cheol;Jang, Myung-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.12
    • /
    • pp.1073-1089
    • /
    • 2006
  • The goal of Natural Language Processing(NLP) is to make a computer understand a natural language and to deliver the meanings of natural language to humans. Word sense Disambiguation(WSD is a very important technology to achieve the goal of NLP. In this paper, we describe a technology for automatic homonyms disambiguation using both Mutual Information(MI) and a Sense-Tagged Compound Noun Dictionary. Previous research work using word definitions in dictionary suffered from the problem of data sparseness because of the use of exact word matching. Our work overcomes this problem by using MI which is an association measure between words. To reflect language features, the rate of word-pairs with MI values, sense frequency and site of word definitions are used as weights in our system. We constructed a Sense-Tagged Compound Noun Dictionary for high frequency compound nouns and used it to resolve homonym sense disambiguation. Experimental data for testing and evaluating our system is constructed from QA(Question Answering) test data which consisted of about 200 query sentences and answer paragraphs. We performed 4 types of experiments. In case of being used only MI, the result of experiment showed a precision of 65.06%. When we used the weighted values, we achieved a precision of 85.35% and when we used the Sense-Tagged Compound Noun Dictionary, we achieved a precision of 88.82%, respectively.

Texture Feature analysis using Computed Tomography Imaging in Fatty Liver Disease Patients (Fatty Liver 환자의 컴퓨터단층촬영 영상을 이용한 질감특징분석)

  • Park, Hyong-Hu;Park, Ji-Koon;Choi, Il-Hong;Kang, Sang-Sik;Noh, Si-Cheol;Jung, Bong-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • In this study we proposed a texture feature analysis algorithm that distinguishes between a normal image and a diseased image using CT images of some fatty liver patients, and generates both Eigen images and test images which can be applied to the proposed computer aided diagnosis system in order to perform a quantitative analysis for 6 parameters. And through the analysis, we derived and evaluated the recognition rate of CT images of fatty liver. As the results of examining over 30 example CT images of fatty liver, the recognition rates representing a specific texture feature-value are as follows: some appeared to be as high as 100% including Average Gray Level, Entropy 96.67%, Skewness 93.33%, and Smoothness while others showed a little low disease recognition rate: 83.33% for Uniformity 86.67% and for Average Contrast 80%. Consequently, based on this research result, if a software that enables a computer aided diagnosis system for medical images is developed, it will lead to the availability for the automatic detection of a diseased spot in CT images of fatty liver and quantitative analysis. And they can be used as computer aided diagnosis data, resulting in the increased accuracy and the shortened time in the stage of final reading.

A Design and Implementation of Process Controller for BMW (Bacteria Mineral Water) Plant (비엠 활성수 플랜트의 공정제어기 설계 및 구현)

  • Lee, Sang-Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.74-82
    • /
    • 2015
  • In this study, a BMW plant process control system model which produces BMW is suggested and the BMW plant process controller with the following functions is developed. The first function is to operate the electronic overload relays to stop the blower for a certain period of time and to re-operate it again when the blower is overloaded. The second function is to close the motor operated valve automatically in case of power failure to prevent the circulation from the guided tank to the compost throwing tank and to block leak from the compost throwing tank due to the failure of ball valve. The third function is to transfer produced BMW from the concentration tank to 4 storage tanks for automatic managing of the BMW output. A device to measure the signal of the BMW plant process controller and a test equipment are developed. The designed BMW plant process controller is checked to see if it operates correctly according to the design specifications. The sequence control method based on BMW plant process controller is developed at a low cost in this study, so it is expected to bring improvements in the stability and the efficiency of system and to cause reductions in the operation and the management costs in the future.

Development of Multipoint Simultaneous Full-duplex Team Communication Module for SCBA (SCBA 면체용 다자간 동시 양방향 팀 통신모듈 개발)

  • Kim, Si-Kuk;Choi, Su-Gil;Lim, Woo-Sub;Han, Yong-Taek
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.165-172
    • /
    • 2019
  • This study presents the design and manufacture of a self-contained breathing apparatus SCBA wireless communication module with a multipoint simultaneous full-duplex communication system to enable communication between team members wearing the SCBA system. It is necessary for fire-fighters to wear the SCBA system during extinguishing and rescue work at the fire site. Evaluation of the team communication module confirmed the feasibility of communication over more than 500 m in the test condition based on the line of sight. By implementing the Ad-hoc function, it was confirmed that the communication distance could be extended to 128 m by automatic routing up to 3 hoc. The vertical distance inside the building for successful communication was up to the 5th floor in the open staircase and up to the 3rd floor in the partitioned staircase. Furthermore, the performance testing of the communication module assuming a fire situation, confirmed that five team members correctly recognized the standard abbreviation of fire and wireless communication without a separate PTT key operation. In addition, the flame resistance was verified by exposing the module to a flame at 950 ± 50 ℃ for 5 s and then immediately extinguishing the flame.

Reliability Improvement of Automatic Basal Cell Carcinoma Classifier with an Ambiguous Pattern Class (모호한 패턴 클래스 도입을 통한 기저 세포암 분류기의 신뢰도 향상)

  • Park, Aa-Ron;Baek, Seong-Joon;Jung, In-Wook;Song, Min-Gyu;Na, Seung-Yu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • Raman spectroscopy is known to have strong potential for providing noninvasive dermatological diagnosis of skin cancer. According to the previous work, various well known methods including maximum a posteriori probability (MAP) and multilayer perceptron networks (MLP) showed competitive results. Since even the small errors often leads to a fatal result, we investigated the method that reduces classification error perfectly by screening out some ambiguous patterns. Those ambiguous patterns can be examined by routine biopsy. We incorporated an ambiguous pattern class in MAP, linear classifier using minimum squared error (MSE), MLP and reduced coulomb energy networks (RCE). The experiments involving 216 confocal Raman spectra showed that every methods could perfectly classify BCC by screening out some ambiguous patterns. The best results were obtained with MSE. According to the experimental results, MSE gives perfect classification by screening out 8.8% of test patterns.

A Development of Analysis System for Vessel Traffic Display and Statistics based on Maritime-BigData (해상-빅데이터 기반 선박 항적 표시 및 해상교통량 통계 분석 시스템의 개발)

  • Hwang, Hun-Gyu;Kim, Bae-Sung;Shin, Il-Sik;Song, Sang-Kee;Nam, Gyeung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1195-1202
    • /
    • 2016
  • Recently, a lot of studies that applying the big data technology to various fields, are progressing actively. In the maritime domain, the big data is the meaningful information which makes and gathers by the navigation and communication equipment from the many ships on the ocean. Also, importance of the maritime safety is emphasized, because maritime accidents are rising with increasing of maritime traffic. To support prevention of maritime accidents, in this paper, we developed a vessel traffic display and statistic system based on AIS messages from the many vessels of maritime. Also, to verify the developed system, we conducted tests for vessel track display function and vessel traffic statistic function based on two test scenarios. Therefore, we verified the effectiveness of the developed system for vessel tracks display, abnormal navigation patterns, checking failure of AIS equipments and maritime traffic statistic analyses.

Forecasting the Precipitation of the Next Day Using Deep Learning (딥러닝 기법을 이용한 내일강수 예측)

  • Ha, Ji-Hun;Lee, Yong Hee;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.93-98
    • /
    • 2016
  • For accurate precipitation forecasts the choice of weather factors and prediction method is very important. Recently, machine learning has been widely used for forecasting precipitation, and artificial neural network, one of machine learning techniques, showed good performance. In this paper, we suggest a new method for forecasting precipitation using DBN, one of deep learning techniques. DBN has an advantage that initial weights are set by unsupervised learning, so this compensates for the defects of artificial neural networks. We used past precipitation, temperature, and the parameters of the sun and moon's motion as features for forecasting precipitation. The dataset consists of observation data which had been measured for 40 years from AWS in Seoul. Experiments were based on 8-fold cross validation. As a result of estimation, we got probabilities of test dataset, so threshold was used for the decision of precipitation. CSI and Bias were used for indicating the precision of precipitation. Our experimental results showed that DBN performed better than MLP.

Development of decision support system for water resources management using GloSea5 long-term rainfall forecasts and K-DRUM rainfall-runoff model (GloSea5 장기예측 강수량과 K-DRUM 강우-유출모형을 활용한 물관리 의사결정지원시스템 개발)

  • Song, Junghyun;Cho, Younghyun;Kim, Ilseok;Yi, Jonghyuk
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.22-34
    • /
    • 2017
  • The K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model), a distributed rainfall-runoff model of K-water, calculates predicted runoff and water surface level of a dam using precipitation data. In order to obtain long-term hydrometeorological information, K-DRUM requires long-term weather forecast. In this study, we built a system providing long-term hydrometeorological information using predicted rainfall ensemble of GloSea5(Global Seasonal Forecast System version 5), which is the seasonal meteorological forecasting system of KMA introduced in 2014. This system produces K-DRUM input data by automatic pre-processing and bias-correcting GloSea5 data, then derives long-term inflow predictions via K-DRUM. Web-based UI was developed for users to monitor the hydrometeorological information such as rainfall, runoff, and water surface level of dams. Through this UI, users can also test various dam management scenarios by adjusting discharge amount for decision-making.

Design of Real-Time PreProcessor for Image Enhancement of CMOS Image Sensor (CMOS 이미지 센서의 영상 개선을 위한 실시간 전처리 프로세서의 설계)

  • Jung, Yun-Ho;Lee, Joon-Hwan;Kim, Jae-Seok;Lim, Won-Bae;Hur, Bong-Soo;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.62-71
    • /
    • 2001
  • This paper presents a design of the real-time digital image enhancement preprocessor for CMOS image sensor. CMOS image sensor offers various advantages while it provides lower-quality images than CCD does. In order to compensate for the physical limitation of CMOS sensor, the spatially adaptive contrast enhancement algorithm was incorporated into the preprocessor with color interpolation, gamma correction, and automatic exposure control. The efficient hardware architecture for the preprocessor is proposed and was simulated in VHDL. It is composed of about 19K logic gates, which is suitable for low-cost one-chip PC camera. The test system was implemented on Altera Flex EPF10KGC503-3 FPGA chip in real-time mode, and performed successfully.

  • PDF