• Title/Summary/Keyword: automatic test

Search Result 1,637, Processing Time 0.03 seconds

An Estimation of Probable Precipitation and an Analysis of Its Return Period and Distributions in Busan (부산지역 확률강수량 결정에 따른 재현기간 및 분포도 분석)

  • Lim, Yun-Kyu;Moon, Yun-Seob;Kim, Jin-Seog;Song, Sang-Keun;Hwang, Yong-Sik
    • Journal of the Korean earth science society
    • /
    • v.33 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • In this study, a statistical estimation of probable precipitation and an analysis of its return period in Busan were performed using long-term precipitation data (1973-2007) collected from the Busan Regional Meteorological Administration. These analyses were based on the method of probability weighted moments for parameter estimation, the goodness-of-fit test of chi-square ($x^2$) and the probability plot correlation coefficient (PPCC), and the generalized logistics (GLO) for optimum probability distribution. Moreover, the spatial distributions with the determination of probable precipitation were also investigated using precipitation data observed at 15 Automatic Weather Stations (AWS) in the target area. The return periods for the probable precipitation of 245.2 and 280.6 mm/6 hr with GLO distributions in Busan were estimated to be about 100 and 200 years, respectively. In addition, the high probable precipitation for 1-, 3-, 6-, and 12-hour durations was mostly distributed around Dongrae-gu site, all coastal sites in Busan, Busanjin and Yangsan sites, and the southeastern coastal and Ungsang sites, respectively.

Output-Only System Identification and Model Updating for Performance Evaluation of Tall Buildings (초고층건물의 성능평가를 위한 응답의존 시스템판별 및 모델향상)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.19-33
    • /
    • 2008
  • Dynamic response measurements from natural excitation were carried out for 25- and 42-story buildings to evaluate their inherent properties, such as natural frequencies, mode shapes and damping ratios. Both are reinforced concrete buildings adopting a core wall, or with shear walls as the major lateral force resisting system, but frames are added in the plan or elevation. In particular, shear walls in a 25-story building are converted to frames from the 4th floor level downwards while maintaining a core wall throughout, resulting in a fairly complex structure. Due to this, along with similar stiffness characteristics in the principal directions, significantly coupled and closely spaced modes of motion are expected in this building, making identification rather difficult. By using various state-of-the-art system identification methods, the modal parameters are extracted, and the results are then compared. Three frequency-domain and four time-domain based operational modal identification methods are considered. Overall, all natural frequencies and damping ratios estimated from the different identification methods showed a greater consistency for both buildings, while mode shapes exhibited some degree of discrepancy, varying from method to method. On the other hand, in comparison with analysis results obtained using the initial finite element(FE) models, test results exhibited a significant difference of about doubled frequencies, at least for the three lower modes in both buildings. To improve the correlation between test and analysis, a few manual schemes of FE model updating based on plausible reasons have been applied, and acceptable results are obtained. The advantages and disadvantages of each identification method used are addressed, and some difficulties that might arise from the updating of FE models, including automatic procedures, for such large structures are carefully discussed.

A Study on the Development of the Single Station Fixed Temperature Detector of Low Power Consumption for Residential Fire Prevention (주택화재 예방을 위한 저소비 전력형 단독경보형 정온식감지기 개발에 관한 연구)

  • Park, Se-Hwa;Cho, Jae-Cheol
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.61-68
    • /
    • 2010
  • In this paper, a research and development result for the implementation of single station fixed temperature detector for residential fire prevention is described. The detector was developed for the certification in Japanese market because of very low domestic market situation. It is in the situation that there is no other regulation especially for residential detectors in Korea, Japanese case has been reviewed. Investigation of domestic legal circumstances and a comparative study for the test standard owned by KFI (Korea Institute of Fire Industry & Technology) and JFEII (Japan Fire Equipment Inspection Institute) respectively are also indicated. The detector alarms with a buzzer and an indicating LED. In the implementation ultra low power MCU(Micro Controller Unit) is applied to control the sleeping state and the monitoring state properly with low current consumption. To sense the temperature fast response thermistor is adopted in the design of fixed temperature residential detector. Automatic test function and alarm stop function are also considered in the design. The major factors which influence to current consumption are explained for the purpose of design reference. Main electronics circuit parts related to it's characteristics of the detector are described. It is explained that the measured current and experimental result of the battery discharge can be met over 10 years operation.

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

Experimental Study of SBLOCA Simulation of Safety-Injection Line Break with Single Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 안전주입배관 파단 소형냉각재상실사고 모의에 대한 실험적 연구)

  • Ryu, Sung Uk;Bae, Hwang;Ryu, Hyo Bong;Byun, Sun Joon;Kim, Woo Shik;Shin, Yong-Cheol;Yi, Sung-Jae;Park, Hyun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • An experimental study of the thermal-hydraulic characteristics of passive safety systems (PSSs) was conducted using a system-integrated modular advanced reactor-integral test loop (SMART-ITL). The present passive safety injection system for the SMART-ITL consists of one train with the core makeup tank (CMT), the safety injection tank, and the automatic depressurization system. The objective of this study is to investigate the injection effect of the PSS on the small-break loss-of-coolant accident (SBLOCA) scenario for a 0.4 inch line break in the safety-injection system (SIS). The steady-state condition was maintained for 746 seconds before the break. When the major parameters of the target value and test results were compared, most of the thermal-hydraulic parameters agreed closely with each other. The water level of the reactor pressure vessel (RPV) was maintained higher than that of the fuel assembly plate during the transient, for the present CMT and safety injection tank (SIT) flow rate conditions. It can be seen that the capability of an emergency core cooling system is sufficient during the transient with SMART passive SISs.

The Evaluation of Reliability for Exam Distance of Visual Acuity (시력검사거리에 따른 원거리 시력검사 신뢰성 평가)

  • Chun, Young-Yun;Choi, Hyun-Soo;Park, Seong-Jong;Lee, Seok-Ju
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.17-22
    • /
    • 2014
  • Purpose: We aimed to evaluate reliability of eye exam for visual acuity as a function of distance. Methods: There were 39 patients (78 eyes) who had visual acuity 1.0 or more at 5 meters. We measured refractive power of patients at each distances, 5 meters, 4 meters and 3 meters. Automatic chart (LCD-700, Hyeseong Optic. Co., Korea) used for visual acuity, skiascope (Beta 200, Heine, Germany) and auto refractometer (RK-5, Canon, Japan) used as for objective refraction. Accommodation was examined by minus lens addition methods, and Accommodative lag was examined by grid chart for reading distance. Results: Being compared to 3 meter test, Amount of corrected spherical refractive power decreased by $0.10{\pm}0.38$ D, astigmatism decreased by $0.05{\pm}0.10$ D, and axis of astigmatism rotated toward to temporal by $2.64{\pm}18.75$ degrees for right eyes, by $11.43{\pm}48.55$ degrees for left eyes in case of 5 meter test. Changes of corrected refraction and astigmatism were slightly correlated (r=-0.31, r=-0.29). Conclusions: Because corrected refraction power and amount of astigmatism decreased and axis of astigmatism tends to turn the temporal direction according to exam distance, examination distance of visual acuity should improved as to 5 meters.

Experience of Reticulocytes Measurement at 720 nm Using Spectrophotometer (분광광도계를 이용한 720 nm에서 망상적혈구 측정 경험)

  • Sung, Hyun-Ho;Seok, Dong-In;Jung, You-Hyun;Kim, Dae-Jung;Lee, Seok-Jae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.382-389
    • /
    • 2017
  • Currently, reticulocyte experimental calculation technology used in clinical laboratories are divided two types: manual and automated. Manual reticulocyte counting using a microscopy lacks accuracy due particularly to its low reproducibility, affecting the accuracy of manual reticulocyte count. Moreover, Automatic blood corpuscle analyzer flow cytometry is difficult to be used in underdeveloped countries and small scale laboratories due to relatively high cost. Therefore, this study tried to find a new method to complement these drawbacks. The aim of this study was to compare the stained reticulocytes count by spectrophotometer and also to analyze the statistics of spectrophotometer and flow cytometer. The same 8 EDTA samples were repeated 36 times to compare the agreement between spectrophotometer and flow cytometer. This study measured the specimen diluted 600 times at 700~780 nm by 10 differences. Wavelength between 710 to 730 by absorbance showed a positive correlation between standard data and test data (r=0.967, p<0.01), presenting a correlation between variables. Statistical analyses of regression for test and standard parametric data, the optimal dilution factor was 600 times. Therefore, this study tried to technical utilizes such as contributing economical for the reticulocyte absorbance apply from the auto spectrophotometer, a monitoring system for the reticulocyte relation anemia, etc. Therefore, more extensive studies, including an auto chemical analyzer application, will be needed.

Manufacturing and Structural Analysis of Thick Composite Spar Using AFP Machine (AFP로 제작된 두꺼운 복합재료 스파의 제작 및 구조 해석)

  • Kim, Ji-Hyeon;Han, Jun-Su;Bae, Byung-Hwan;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.212-218
    • /
    • 2015
  • A large composite spar was manufactured using an automatic fiber placement (AFP) machine. To verify its structural performance, the weakest part of the structure, which is called 'corner radius', was tested under bending and examined by finite element analysis. Since the application of AFP machine to composite structure fabrication is still in early stage in Korea, this paper presents the summary of whole process for manufacturing composite spar using AFP machine from mandrel design and analysis to verification test. The deflection and stress by mandrel weight and AFP machine force, thermal deformation and natural frequency were all examined for mandrel design. The target structure was composite C-spar and cured in an autoclave. Test results were compared with nonlinear finite element analysis results to show that the structure has the strength close to the theoretical value. It was confirmed that the corner radius of the spar manufactured by AFP process showed deviation less than 20% compared with first ply failure strength. The results indicate that the AFP technology could be used for large scale composite structure production in the near future.

A Study on Tuning Effects of Intake Manifold, Intake Pipe and Air Filter upon Performance and Exhaust Emissions of Driving Car (운행자동차 성능 및 배기 배출물에 미치는 흡기 다기관, 흡기 파이프 및 공기필터의 튜닝효과에 관한 연구)

  • Bae, Myung-whan;Ku, Young Jin;Park, Hui-seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.538-548
    • /
    • 2016
  • The purpose of this study is to identify the possibility of effective tuning works, understand the characteristics of tuning engine, and analyse the basic data of engine tuning inspection corresponding to the safe operation and environment of a driving gasoline car. The effects of tuning on the characteristics of performance and exhaust emissions under a wide range of engine speeds are experimentally investigated by the actual driving car with a four-cycle, four-cylinder DOHC, turbo-intercooler, water-cooled gasoline engine operating at four types of non-tuning, tuning 1, 2 and 3. The tuning parts in the gasoline engine are the intake manifold, intake pipe and air filter. In the experiment, the output, torque and air-fuel ratio of the five-speed automatic transmission vehicles were measured at the chassis dynamometer(Dynojet 224xLC) with one person on board. The exhaust emissions of $NO_X$, THC, CO, $O_2$ and $CO_2$, and excess air ratio(${\lambda}$) at the other chassis dynamometer(DASAN-MD-ASM-97-KR-HD) were also measured by the idle/constant-speed mode(ASM2525 mode) test method. It is found that the actual air-fuel ratios of non-tuning and tuning engines were shown to be lower than the stoichiometric air-fuel ratio with increasing engine speed, and the actual air-fuel ratio of non-tuning engine was slightly higher than those of tuning engines when the engine speed is more than 4000 rpm. The output was significantly increased by the tuning whereby the maximum output of tuning engine was more increased to approximately 117.64% than that of non-tuning engine. In addition, CO, THC and $NO_X$ emissions of non-tuning and tuning engines measured by the constant-speed test mode were all satisfied with the inspection standards. CO emission was increased, while THC and $NO_X$ emissions were reduced by tuning.

Development of the Algorithm for Traffic Accident Auto-Detection in Signalized Intersection (신호교차로 내 실시간 교통사고 자동검지 알고리즘 개발)

  • O, Ju-Taek;Im, Jae-Geuk;Hwang, Bo-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.97-111
    • /
    • 2009
  • Image-based traffic information collection systems have entered widespread adoption and use in many countries since these systems are not only capable of replacing existing loop-based detectors which have limitations in management and administration, but are also capable of providing and managing a wide variety of traffic related information. In addition, these systems are expanding rapidly in terms of purpose and scope of use. Currently, the utilization of image processing technology in the field of traffic accident management is limited to installing surveillance cameras on locations where traffic accidents are expected to occur and digitalizing of recorded data. Accurately recording the sequence of situations around a traffic accident in a signal intersection and then objectively and clearly analyzing how such accident occurred is more urgent and important than anything else in resolving a traffic accident. Therefore, in this research, we intend to present a technology capable of overcoming problems in which advanced existing technologies exhibited limitations in handling real-time due to large data capacity such as object separation of vehicles and tracking, which pose difficulties due to environmental diversities and changes at a signal intersection with complex traffic situations, as pointed out by many past researches while presenting and implementing an active and environmentally adaptive methodology capable of effectively reducing false detection situations which frequently occur even with the Gaussian complex model analytical method which has been considered the best among well-known environmental obstacle reduction methods. To prove that the technology developed by this research has performance advantage over existing automatic traffic accident recording systems, a test was performed by entering image data from an actually operating crossroad online in real-time. The test results were compared with the performance of other existing technologies.