• Title/Summary/Keyword: automatic spray

Search Result 46, Processing Time 0.023 seconds

Policy Direction for Fire Products Life Expectancy Legislation (소방용품 내용연수 제도화 정책방안)

  • Baek, Chang Sun;Park, In-Seon
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • This study is intended to provide legislative direction for fire products life expectancy. Domestic and international laws relating to fire products life expectancy have been reviewed, and the results of a Fire Safety Manager Consciousness (FSMC) survey were analyzed. The FSMC survey has been designed in order to assist with the establishment of appropriate fire safety policy. A questionnaire survey was conducted with 660 fire safety administrators from 17 municipal and provincial districts, with the intention of gaining expertise on the extension of life-span for 32 fire products. The survey also asked for candidates opinions on future policy direction. Based on the survey results and the review of policies within other nations, we have devised a set of policy issues with the intention of extending the life-span of fire-safety items. The survey result revealed that 79.3% of Fire Safety Managers (FSMs) concurred with the establishment of legislation regarding the maintenance and correct care of fire-safety products. Overall, over 30% of FSMs were in favor of regulations regarding Ddry chemical fire extinguishers (77.3%), fire detectors (44.6%), fire hoses (44.4%), gaseous agent fire extinguisher (40.6%), automatic descending life lines (36.2%), exit lights (35.9%), air respirators (35.9%), extinguishing systems for residential cooking facilities (33.9%), automatic spray-type extinguishing units (33.9%), emergency lights (31.2%), and gas leakage detectors (30.7%). Especially, among these, dry chemical fire extinguishers (60.0%), detectors (20.0%), and fire hose (18.8%) were identified as the fire products primarily in need of maintenance legislation. The general consensus is that fire products older than 10 years need to be replaced. Based on the survey results, there was general agreement that fire product life expectancy is in need of legislation. This study recommends the introduction of fire product life expectancy legislation in phases.

Study on the Atomization Characteristics of a Counter-swirling Two-phase Atomizer with Variations of Swirl angle (역선회 이류체 미립화기의 선회각 변화에 따른 미립화 특성연구)

  • Kim, N.H.;Lee, S.G.;Ha, M.H.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.125-130
    • /
    • 2001
  • Experimental and analytical researches have been conducted on the twin-fluid atomizers for better droplet breakup during the past decades. But, the studies on the disintegration mechanism still present a great challenge to understand the drop behavior and breakup structure. In an effort to describe the aerodynamic behavior of the sprays issuing from the internal mixing counter-swirling nozzle, the spatial distribution of axial (U) radial (V) and tangential (W) components of droplet velocities are investigated across the radial distance at several axial locations of Z=30, 50, 80, 120 and 170mm, respectively. Experiments were conducted for the liquid flow rates which was kept constant at 7.95 g/s and the air injection pressures were varied from 20 kPa to 140 kPa. Counter-swirling internal mixing nozzles manufactured at angles of $15^{\circ},\;30^{\circ},\;45^{\circ}$ and $60^{\circ}$ the central axis with axi-symmetric tangential-drilled holes was considered. The distributions of velocities and turbulence intensities are comparatively analyzed. PDPA is installed to specify spray flows, which have been conducted along the axial downstream distance from the nozzle exit. Ten thousand of sampling data was collected at each point with time limits of 30 second. 3-D automatic traversing system is used to control the exact measurement. It is observed that the sprays with all swirl angle have the maximum SMD for on air injection pressure of 20 kPa and 140 kPa with centerline, respectively. The nozzle with swirl angle of $60^{\circ}$ has vest performance.

  • PDF

Qualitative Analysis of the Major Constituents in Traditional Oriental Prescription Bang-poong-tong-sung-san by Liquid Chromatography/Ultraviolet Detector/Ion-Trap Time-of-Flight Mass Spectrometry

  • Eom, Han Young;Kim, Hyung-Seung;Han, Sang Beom
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • An advanced and reliable high performance liquid chromatography (HPLC)/ultraviolet detector (UV)/ion-trap time-of-flight (IT-TOF) mass spectrometry was developed for the simultaneous quantification of 19 marker compounds in Bang-poong-tong-sung-san (BPTS), a traditional oriental prescription. Various parameters affecting HPLC separation and IT-TOF detection were investigated, and optimized conditions were identified. The separation was achieved on a Capcell PAK C18 column ($1.5mm{\times}250mm$, $5{\mu}m$ particle size) using a gradient elution of acetonitrile and water containing 0.1% formic acid at a flow rate of 0.1 mL/min. The column temperature was maintained at $40^{\circ}C$ and the injection volume was $2{\mu}L$. IT-TOF system was equipped with an electrospray ion source (ESI) operating in positive or negative ion mode. The optimized electrospray ionization parameters were as follows: ion spray voltage, +4.5 kV (positive ion mode), or -3.5 kV (negative ion mode); drying gas ($N_2$), 1.5 L/min; heat block temperature, $200^{\circ}C$. Automatic $MS^n$ (n = 1~3) analyses were carried out to obtain structural information of analytes. Elemental compositions and their mass errors were calculated based on their accurate masses obtained from a formula predictor software. The marker compounds in BPTS were identified by comparisons between $MS^n$ spectra from standards and those from extracts. Moreover, the libraries of $MS^2$ and $MS^3$ spectra and accurate masses of parent and fragment ions for marker compounds were constructed. The developed method was successfully applied to the BPTS extracts and identified 17 out of 19 marker compounds in the BPTS extracts.

Development of Precision Overhead Watering and Boom Irrigation System for Fruit Vegetable Seedlings (과채류 육묘용 정밀 두상관수 시스템 개발)

  • Dong Hyeon Kang;Soon Joong Hong;Dong Eok Kim;Min Jung Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.8-14
    • /
    • 2023
  • This study was conducted to develop a precision automatic irrigation system in a nursery by considering the problems and improvements of manual and the conventional automatic irrigation system. The amount of irrigated water between the conventional automatic irrigation system and manual irrigation was 28.7 ± 4.4 g and 14.2 ± 4.3 g, respectively, and the coefficient of variation was less than 30%. However, the coefficient of variation of the conventional automatic irrigation system of 15%, was higher than that of manual irrigation of 30%. The irrigation test using the developed uniform irrigation system attached with the nozzle of a spray angle 80° and most highest uniformity was at height 600 mm. And coefficient of variation of the irrigation uniformity at the center part was within 20%, but irrigation amount of the edge part was lower 50% and over compared to the center part. As a result of a tomato grafting seedling cultivation test using the developed uniform irrigation system, the average plant height of seedling at the edge part was 28 mm but plant height at the center part was higher as 72 mm. Therefore, it was necessary to apply additional irrigation device at the edge part. The irrigation uniformity of the edge concentrated irrigation system was investigated that the irrigation amount of the edge part was irrigated by more than 50% compared with the center part, and coefficient of variation of the irrigation amount at the center part was less than 30%. As a result of a cucumber grafting seedling cultivation test using the edge concentrated irrigation system, the plant height of seedlings in the edge and central part of cultivation bed were 24% and 26%, respectively, so irrigation uniformity was higher then the uniform irrigation system. In order to improve the uniformity of seedlings, it is necessary to adjust the height of boom according to the growth of the seedling by installing a distance sensor in the overhead watering and boom irrigation system.

Development of Fog Cooling Control System and Cooling Effect in Greenhouse (온실 포그 냉방 제어시스템 개발 및 냉방효과)

  • Park, Seok Ho;Moon, Jong Pil;Kim, Jin Koo;Kim, Seoung Hee
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.265-276
    • /
    • 2020
  • This study was conducted to provide a basis for raising farm income by increasing the yield and extending the cultivation period by creating an environment where crops can be cultivated normally during high temperatures in summer. The maximum cooling load of the multi-span greenhouse with a floor area of 504 ㎡ was found to be 462,609 W, and keeping the greenhouse under 32℃ without shading the greenhouse at a high temperature, it was necessary to fog spray 471.6 L of water per hour. The automatic fog cooling control device was developed to effectively control the fog device, the flow fan, and the light blocking device constituting the fog cooling system. The fog cooling system showed that the temperature of the greenhouse could be lowered by 6℃ than the outside temperature. The relative humidity of the fog-cooled greenhouse was 40-80% during the day, about 20% higher than that of the control greenhouse, and this increase in relative humidity contributed to the growth of cucumbers. The relative humidity of the fog cooling greenhouse during the day was 40-80%, which was about 20% higher than that of the control greenhouse, and this increase in relative humidity contributed to the growth of cucumbers. The yield of cucumbers in the fog-cooled greenhouse was 1.8 times higher in the single-span greenhouse and two times higher in the multi-span greenhouse compared to the control greenhouse.

Real-time Road Surface Recognition and Black Ice Prevention System for Asphalt Concrete Pavements using Image Analysis (실시간 영상이미지 분석을 통한 아스팔트 콘크리트 포장의 노면 상태 인식 및 블랙아이스 예방시스템)

  • Hoe-Pyeong Jeong;Homin Song;Young-Cheol Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.82-89
    • /
    • 2024
  • Black ice is very difficult to recognize and reduces the friction of the road surface, causing automobile accidents. Since black ice is difficult to detect, there is a need for a system that identifies black ice in real time and warns the driver. Various studies have been conducted to prevent black ice on road surfaces, but there is a lack of research on systems that identify black ice in real time and warn drivers. In this paper, an real-time image-based analysis system was developed to identify the condition of asphalt road surface, which is widely used in Korea. For this purpose, a dataset was built for each asphalt road surface image, and then the road surface condition was identified as dry, wet, black ice, and snow using deep learning. In addition, temperature and humidity data measured on the actual road surface were used to finalize the road surface condition. When the road surface was determined to be black ice, the salt spray equipment installed on the road was automatically activated. The surface condition recognition system for the asphalt concrete pavement and black ice automatic prevention system developed in this study are expected to ensure safe driving and reduce the incidence of traffic accidents.