• 제목/요약/키워드: automatic segmentation

검색결과 512건 처리시간 0.031초

Volumetric CT Texture Analysis of Intrahepatic Mass-Forming Cholangiocarcinoma for the Prediction of Postoperative Outcomes: Fully Automatic Tumor Segmentation Versus Semi-Automatic Segmentation

  • Sungeun Park;Jeong Min Lee;Junghoan Park;Jihyuk Lee;Jae Seok Bae;Jae Hyun Kim;Ijin Joo
    • Korean Journal of Radiology
    • /
    • 제22권11호
    • /
    • pp.1797-1808
    • /
    • 2021
  • Objective: To determine whether volumetric CT texture analysis (CTTA) using fully automatic tumor segmentation can help predict recurrence-free survival (RFS) in patients with intrahepatic mass-forming cholangiocarcinomas (IMCCs) after surgical resection. Materials and Methods: This retrospective study analyzed the preoperative CT scans of 89 patients with IMCCs (64 male; 25 female; mean age, 62.1 years; range, 38-78 years) who underwent surgical resection between January 2005 and December 2016. Volumetric CTTA of IMCCs was performed in late arterial phase images using both fully automatic and semi-automatic liver tumor segmentation techniques. The time spent on segmentation and texture analysis was compared, and the first-order and second-order texture parameters and shape features were extracted. The reliability of CTTA parameters between the techniques was evaluated using intraclass correlation coefficients (ICCs). Intra- and interobserver reproducibility of volumetric CTTAs were also obtained using ICCs. Cox proportional hazard regression were used to predict RFS using CTTA parameters and clinicopathological parameters. Results: The time spent on fully automatic tumor segmentation and CTTA was significantly shorter than that for semi-automatic segmentation: mean ± standard deviation of 1 minutes 37 seconds ± 50 seconds vs. 10 minutes 48 seconds ± 13 minutes 44 seconds (p < 0.001). ICCs of the texture features between the two techniques ranged from 0.215 to 0.980. ICCs for the intraobserver and interobserver reproducibility using fully automatic segmentation were 0.601-0.997 and 0.177-0.984, respectively. Multivariable analysis identified lower first-order mean (hazard ratio [HR], 0.982; p = 0.010), larger pathologic tumor size (HR, 1.171; p < 0.001), and positive lymph node involvement (HR, 2.193; p = 0.014) as significant parameters for shorter RFS using fully automatic segmentation. Conclusion: Volumetric CTTA parameters obtained using fully automatic segmentation could be utilized as prognostic markers in patients with IMCC, with comparable reproducibility in significantly less time compared with semi-automatic segmentation.

Independent Component Analysis를 이용한 의료영상의 자동 분할에 관한 연구 (A Study of Automatic Medical Image Segmentation using Independent Component Analysis)

  • 배수현;유선국;김남형
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.64-75
    • /
    • 2003
  • Medical image segmentation is the process by which an original image is partitioned into some homogeneous regions like bones, soft tissues, etc. This study demonstrates an automatic medical image segmentation technique based on independent component analysis. Independent component analysis is a generalization of principal component analysis which encodes the higher-order dependencies in the input in addition to the correlations. It extracts statistically independent components from input data. Use of automatic medical image segmentation technique using independent component analysis under the assumption that medical image consists of some statistically independent parts leads to a method that allows for more accurate segmentation of bones from CT data. The result of automatic segmentation using independent component analysis with square test data was evaluated using probability of error(PE) and ultimate measurement accuracy(UMA) value. It was also compared to a general segmentation method using threshold based on sensitivity(True Positive Rate), specificity(False Positive Rate) and mislabelling rate. The evaluation result was done statistical Paired-t test. Most of the results show that the automatic segmentation using independent component analysis has better result than general segmentation using threshold.

색상 정보를 이용한 반자동 영상분할 기법 (Semi-Automatic Segmentation based on Color Information)

  • 김민호;최재각;호요성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.619-622
    • /
    • 1999
  • This paper describes a new semi-automatic segmentation algorithm based on color information. Semi-automatic segmentation mainly consists of intra-frame segmentation and inter-frame segmentation. While intra-frame segmentation extracts video objects of interest from boundary information provided by the user and intensity information of the image, inter-frame segmentation partitions the image into the video objects and background by tracking the motion of video objects. For inter-frame segmentation, color information (Y, Cb and Cr) of the current frame can be used efficiently in order to find the exact boundary of the video objects. In this paper we propose a new region growing algorithm which can maximize the ability of region differentiation, while preserving features of each color component.

  • PDF

3D INTERACTIVE SEGMENTATION OF BRAIN MRI

  • Levinski, Konstantin;Sourin, Alexei;Zagorodnov, Vitali
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.55-58
    • /
    • 2009
  • Automatic segmentation of brain MRI data usually leaves some segmentation errors behind that are to be subsequently removed interactively, using computer graphics tools. This interactive removal is normally performed by operating on individual 2D slices. It is very tedious and still leaves some segmentation errors which are not visible on the slices. We have proposed to perform a novel 3D interactive correction of brain segmentation errors introduced by the fully automatic segmentation algorithms. We have developed the tool which is based on 3D semi-automatic propagation algorithm. The paper describes the implementation principles of the proposed tool and illustrates its application.

  • PDF

Optimization of Multi-Atlas Segmentation with Joint Label Fusion Algorithm for Automatic Segmentation in Prostate MR Imaging

  • Choi, Yoon Ho;Kim, Jae-Hun;Kim, Chan Kyo
    • Investigative Magnetic Resonance Imaging
    • /
    • 제24권3호
    • /
    • pp.123-131
    • /
    • 2020
  • Purpose: Joint label fusion (JLF) is a popular multi-atlas-based segmentation algorithm, which compensates for dependent errors that may exist between atlases. However, in order to get good segmentation results, it is very important to set the several free parameters of the algorithm to optimal values. In this study, we first investigate the feasibility of a JLF algorithm for prostate segmentation in MR images, and then suggest the optimal set of parameters for the automatic prostate segmentation by validating the results of each parameter combination. Materials and Methods: We acquired T2-weighted prostate MR images from 20 normal heathy volunteers and did a series of cross validations for every set of parameters of JLF. In each case, the atlases were rigidly registered for the target image. Then, we calculated their voting weights for label fusion from each combination of JLF's parameters (rpxy, rpz, rsxy, rsz, β). We evaluated the segmentation performances by five validation metrics of the Prostate MR Image Segmentation challenge. Results: As the number of voxels participating in the voting weight calculation and the number of referenced atlases is increased, the overall segmentation performance is gradually improved. The JLF algorithm showed the best results for dice similarity coefficient, 0.8495 ± 0.0392; relative volume difference, 15.2353 ± 17.2350; absolute relative volume difference, 18.8710 ± 13.1546; 95% Hausdorff distance, 7.2366 ± 1.8502; and average boundary distance, 2.2107 ± 0.4972; in parameters of rpxy = 10, rpz = 1, rsxy = 3, rsz = 1, and β = 3. Conclusion: The evaluated results showed the feasibility of the JLF algorithm for automatic segmentation of prostate MRI. This empirical analysis of segmentation results by label fusion allows for the appropriate setting of parameters.

객체기반 비디오 편집 시스템을 위한 불확실 영역기반 사용자 지원 비디오 객체 분할 기법 (Uncertain Region Based User-Assisted Segmentation Technique for Object-Based Video Editing System)

  • 유홍연;홍성훈
    • 한국멀티미디어학회논문지
    • /
    • 제9권5호
    • /
    • pp.529-541
    • /
    • 2006
  • 본 논문에서는 객체기반 비디오 부호화 또는 멀티미디어 편집을 위한 반지동 비디오 객체 분할방식을 제안한다. 반자동 객체분할은 사용자 지원에 의한 분할 방식으로, 비디오 시퀀스의 초기 프레임에서 사용자가 관심객체의 경계를 표시하고 이후의 영상 프레임의 객체를 배경으로부터 연속적으로 분리해 낸다. 제안된 방식은 부분적으로 사용자 조력에 의한 프레임내 분할과 완전 자동에 의한 프레임간 분할 처리과정으로 구성되는데, 영상 전체에 대해 연산을 수행하는 기존 방식과는 달리 객체 경계가 존재하는 영상영역 부분에서만 연산을 수행한다. 프레임내 분할은 사용자가 관심객체의 경계를 지정하고, 이 경계 주위 화소들의 유사성을 이용한 후처리에 의해 정확한 초기 객체를 구한다. 프레임간 분할에서는 이전 프레임에서 추출한 객체의 경계 정보에 근거하여 시간적 유사성을 구한 후 경계와 영역 추적에 의해 연속적으로 동영상 객체를 추출한다. 실험결과로부터 제안된 방식은 비디오 편집, 객체기반 비디오 압축 및 인덱싱 등의 멀미디어 응용에 사용 가능할 정도로 안정되고 정확한 객체추출을 수행함을 확인하였다. 이 결과를 바탕으로 다수의 편리한 기능을 포함한 비디오 편집시스템을 개발하였다.

  • PDF

Ramp Edge Detection을 이용한 끝점 검출과 음절 분할에 관한 연구 (A Study on Endpoint Detection and Syllable Segmentation System Using Ramp Edge Detection)

  • 유일수;홍광석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2216-2219
    • /
    • 2003
  • Accurate speech region detection and automatic syllable segmentation is important part of speech recognition system. In automatic speech recognition system, they are needed for the purpose of accurate recognition and less computational complexity, In this paper, we Propose improved syllable segmentation method using ramp edge detection method and residual signal Peak energy. These methods were used to ensure accuracy and robustness for endpoint detection and syllable segmentation system. They have almost invariant response to various background noise levels. As experimental results, we obtained the rate of 90.7% accuracy in syllable segmentation in a condition of accurate endpoint detection environments.

  • PDF

Automatic Liver Segmentation on Abdominal Contrast-enhanced CT Images for the Pre-surgery Planning of Living Donor Liver Transplantation

  • Jang, Yujin;Hong, Helen;Chung, Jin Wook
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권1호
    • /
    • pp.37-40
    • /
    • 2014
  • Purpose For living donor liver transplantation, liver segmentation is difficult due to the variability of its shape across patients and similarity of the density of neighbor organs such as heart, stomach, kidney, and spleen. In this paper, we propose an automatic segmentation of the liver using multi-planar anatomy and deformable surface model in portal phase of abdominal contrast-enhanced CT images. Method Our method is composed of four main steps. First, the optimal liver volume is extracted by positional information of pelvis and rib and by separating lungs and heart from CT images. Second, anisotropic diffusing filtering and adaptive thresholding are used to segment the initial liver volume. Third, morphological opening and connected component labeling are applied to multiple planes for removing neighbor organs. Finally, deformable surface model and probability summation map are performed to refine a posterior liver surface and missing left robe in previous step. Results All experimental datasets were acquired on ten living donors using a SIEMENS CT system. Each image had a matrix size of $512{\times}512$ pixels with in-plane resolutions ranging from 0.54 to 0.70 mm. The slice spacing was 2.0 mm and the number of images per scan ranged from 136 to 229. For accuracy evaluation, the average symmetric surface distance (ASD) and the volume overlap error (VE) between automatic segmentation and manual segmentation by two radiologists are calculated. The ASD was $0.26{\pm}0.12mm$ for manual1 versus automatic and $0.24{\pm}0.09mm$ for manual2 versus automatic while that of inter-radiologists was $0.23{\pm}0.05mm$. The VE was $0.86{\pm}0.45%$ for manual1 versus automatic and $0.73{\pm}0.33%$ for manaual2 versus automatic while that of inter-radiologist was $0.76{\pm}0.21%$. Conclusion Our method can be used for the liver volumetry for the pre-surgery planning of living donor liver transplantation.

Automatic Detection of the Middle Tooth Crown Part for Full Automatic Tooth Segmentation in Dental CT Images

  • Lee, Chan-Woo;Chae, Ok-Sam
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.17-23
    • /
    • 2018
  • In this paper, we propose the automatic detection method which find the middle part of tooth crown to start individual tooth segmentation. There have been many studies on the automation of individual tooth segmentation, but there are still many problems for full automation. Detection of middle part of tooth crown used as initial information for individual tooth segmentation is closely related to performance, but most studies are based on the assumption that they are already known or they can be represented by using a straight line. In this study, we have found that the jawbone curve is similar to the tooth alignment curve by spatially analyzing the CT image, and propose a method to automatically detect the middle part of tooth crown. The proposed method successfully uses the jawbone curves to successfully create a tooth alignment curve that is difficult to detect. As the middle part of tooth crown is in the form of a tooth alignment curve, the proposed method detects the middle part of tooth crown successfully. It has also been verified by experiments that the proposed method works well on real dental CT images.

유/무성/묵음 정보를 이용한 TTS용 자동음소분할기 성능향상 (Improvement of an Automatic Segmentation for TTS Using Voiced/Unvoiced/Silence Information)

  • 김민제;이정철;김종진
    • 대한음성학회지:말소리
    • /
    • 제58호
    • /
    • pp.67-81
    • /
    • 2006
  • For a large corpus of time-aligned data, HMM based approaches are most widely used for automatic segmentation, providing a consistent and accurate phone labeling scheme. There are two methods for training in HMM. Flat starting method has a property that human interference is minimized but it has low accuracy. Bootstrap method has a high accuracy, but it has a defect that manual segmentation is required In this paper, a new algorithm is proposed to minimize manual work and to improve the performance of automatic segmentation. At first phase, voiced, unvoiced and silence classification is performed for each speech data frame. At second phase, the phoneme sequence is aligned dynamically to the voiced/unvoiced/silence sequence according to the acoustic phonetic rules. Finally, using these segmented speech data as a bootstrap, phoneme model parameters based on HMM are trained. For the performance test, hand labeled ETRI speech DB was used. The experiment results showed that our algorithm achieved 10% improvement of segmentation accuracy within 20 ms tolerable error range. Especially for the unvoiced consonants, it showed 30% improvement.

  • PDF