• Title/Summary/Keyword: automatic parking control

Search Result 28, Processing Time 0.035 seconds

A Simulation for the Train Automatic Operation Control System (전동차의 자동운전제어 시스템에 관한 시뮬레이션 기술)

  • 한성호;윤용기;안태기;김원경;조연옥
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.255-261
    • /
    • 1998
  • The train automatic operation control system is an on-board train control system that is widely adopted in modern rapid transit systems. The control system consists of TCMS(Train Control and Monitoring System), ATC(Automatic Train Control), ATO(Automatic Train Operation) and TWC(Train to wayside communication) in the train and wayside facilities. The functions of the system is to regulate train riding comfort, to service limited speed and smoothness during start, acceleration, constant speed travel, and fixed point parking under the corresponding commands. The paper describes the simulation model of the train automatic operation control of subway system, configuration of simulator hardware and software and operational algorithms.

  • PDF

A Study on Generation of Reverse Parking Guideline Reflecting Position of Camera (카메라 위치를 반영한 후진 주차 가이드라인 생성 연구)

  • Heo, Jun-Ho;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.591-598
    • /
    • 2016
  • The final step of driving a car is parking, which is the most difficult part for people learning to drive. Parking in narrow parking spaces is difficult for both ordinary drivers and beginners. To solve this problem, the development of SPAS (Smart Parking Assist System), ACC (Automatic Control System) improves the convenience of drivers. In addition, parking assistance systems have been developed to recognize more accurately the surrounding environment to the driver using the ultrasound, camera, thermal camera, and radar. This paper proposes the reverse turning radius to process images as if the camera is located in the center of the vehicle regardless of the actual camera position. In addition, it generates the parking guidelines through verification using the vehicle.

Experimental study on practical automatic snowplows

  • Ahn, Doo-Sung;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.160.1-160
    • /
    • 2001
  • In this study, control technique of two types of automatic snowplow was experimentally investigated. One is a remote-controlled snowplow used for removing snow around houses, and the other is an autonomous snowplow for use in wide, open spaces such as a parking lot of a large-scale retail store. A commercially available snowplow was modified to enable remote control by the use of a personal handy-phone system. The autonomous controller utilizes a vision sensor that consists of a CCD video camera and a computer for image processing. In addition, design of a practical landmark was examined.

  • PDF

Motion Planning of the Car-like Vehicle in the Parking Space by the Motion Space (M-Space를 이용한 자동 주차를 위한 주차 경로 생성)

  • Kim, Dal-Hyung;Chung, Woo-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Automatic parking assist system is one of the key technologies of the future automobiles. Control problem of a car-like vehicle is not easy due to the nonholonomic constraints. In this paper, a practical solution for planning a car-parking path is proposed according to the proposed motion space (M-space) approach. The M-space is the extension of the conventional configuration space (C-space). A collision-free, nonholonomic feasible path can be directly computed by the M-space conversion and a back-propagation of reachable regions from the goal. The proposed planning scheme provide not a single solution, but also a candidate solution set, therefore, optimization of the parking path can be easily carried out with respect to performance criteria such as safety, maneuvering, and so on. Presented simulation results clearly show that the proposed scheme provides various practical solutions.

  • PDF

Combining Object Detection and Hand Gesture Recognition for Automatic Lighting System Control

  • Pham, Giao N.;Nguyen, Phong H.;Kwon, Ki-Ryong
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.329-332
    • /
    • 2019
  • Recently, smart lighting systems are the combination between sensors and lights. These systems turn on/off and adjust the brightness of lights based on the motion of object and the brightness of environment. These systems are often applied in places such as buildings, rooms, garages and parking lot. However, these lighting systems are controlled by lighting sensors, motion sensors based on illumination environment and motion detection. In this paper, we propose an automatic lighting control system using one single camera for buildings, rooms and garages. The proposed system is one integration the results of digital image processing as motion detection, hand gesture detection to control and dim the lighting system. The experimental results showed that the proposed system work very well and could consider to apply for automatic lighting spaces.

Comparisonal Analysis of Path Planning Methods for Automatic Parking Control of a Car-Like Mobile Robot (자동주차를 위한 차량형 자율주행 로봇에 적합한 경로계획법의 비교분석)

  • Kwon, Hyun-Ki;Chung, Woo-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.267-274
    • /
    • 2012
  • We proposed the KPP (Korea university Path Planner) in our previous works. The KPP is the path planning scheme of a car-like mobile robot in parking environment. The objective of this paper is to investigate the advantage of the KPP through the quantitative and qualitative analysis compared with conventional RRT. For comparison, we proposed travel time for performance index. This paper shows that the KPP shows outstanding performances from the viewpoint of travel time and computational efficiency compared with RRT.

Fuzzy Inference System Architecture for Customer Satisfaction Service (고객 만족 서비스를 위한 퍼지 추론 시스템 구조)

  • Kwon, Hee-Chul;Yoo, Jung-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.219-226
    • /
    • 2010
  • Recently most parking control systems provide customers with various services, but most of the services are just the extension of parking spaces, automatic parking control system and so on. It is essential to use the satisfaction degree as the extent that customer are satisfied with parking control system to improve the quality of the system services and diversify the system services. The degree of satisfaction is different from customer to customer in same condition and can be represented as linguistic variables. In this paper, we present therefore a technique that quantify how much customer are satisfied with parking control system and fuzzy inference system architecture as a solution that can help us to make a efficient decision for these parking problems. In this architecture, inference engine using fuzzy logic compares context data with the rules in the fuzzy rule-based system, gets the sub-results, aggregates them and defuzzifies the aggregated result using MATLAB application programming to obtain crisp value. Fuzzy inference system architecture presented in this paper, can be used as a efficient method to analyze the satisfaction degree which is represented as fuzzy linguistic variables by human emotion. And it can be used to improve the satisfaction degree of not only parking system but also other service systems of various domains.

Convergence Analysis of Kinematic Parameter Calibration for a Car-Like Mobile Robot (차량형 이동로봇의 기구학적 파라미터 보정을 위한 수렴성 분석)

  • Yoo, Kwang-Hyun;Lee, Kook-Tae;Jung, Chang-Bae;Chung, Woo-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1256-1265
    • /
    • 2011
  • Automated parking assist systems are being commercialized and rapidly spread in the market. In order to improve odometry accuracy, we proposed a practical odometry calibration scheme of Car-Like Mobile Robot (CLMR). However, there were some open problems in our prior work. For example, it was not clear whether the kinematic parameters always converged or not using the proposed calibration scheme. In addition, test driving had to be carried out "twice" without detailed explanation. This research aims to provide answers for the addressed questions though the convergence property analysis of the calibration scheme. In this paper, we evaluate on the effect of the kinematic parameter error on the odometry error at the final pose by numerical computation. The evaluation will show that the wheel diameter and tread of the CLMR can be calibrated by iterative test drives. In addition, the region of convergence in the parametric space will be discussed. Presented experimental results clearly showed that the proposed calibration scheme would be useful in practical applications.

차량의 자동주행을 위한 목표물 추적 알고리듬: AIMM-UKF

  • 김용식;홍금식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.166-166
    • /
    • 2004
  • 운전자 보조시스템에는 적응순항제어 (adaptive cruise control), 차선변경 (lane change), 충돌경고 (collision warning), 충돌회피 (collision avoidance), 및 자동주차 (automatic parking) 등이 있다. 이런 운전자 보조시스템은 어떤 목적을 가지고 있다. 운전자의 부담을 줄이고 안전을 위하여 차량의 주행방향에 있는 장애물이나 차량을 감지하여 차량간의 안전거리론 유지하고 자동차가 일정 속도를 유지하도록 한다. 운전자 보조시스템의 효율은 센서들로부터 얻어진 정보의 해석에 달려있다.(중략)

  • PDF

A Study on the Control System of the Narrow Vehicles for Improvement of Maneuvering under Emergency Situation (폭이 좁은 차량의 비상주행시 주행성능개선을 위한 제어시스템에 관한 연구)

  • So, Sang-Gyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.166-174
    • /
    • 2004
  • In urban area narrow commuter vehicles have attracted interest as a possible solution to reduce traffic congestion and parking problems. However, a narrow vehicle has an increased to overturn during hard cornering when compared to conventional vehicles. This tendency can be reduced by tilting it toward the inside of the turn. Two types of automatic tilting control systems which are Direct Tilt Control(DTC) and Steering Tilt Control(STC) have been developed. In this paper as one of the technique to improve the handling performance for the unusual vehicle the control system which blends both the DTC and the STC system is considered. It uses the merits of both the DTC and the STC system. As a control strategy for combination the switching control method is used. Finally, the fact that the unusual vehicle is safe under an emergency situation such as slippery road surface is proved by computer simulation.