• Title/Summary/Keyword: automatic measurement system

Search Result 611, Processing Time 0.026 seconds

Development of an Integrated Measurement and Analysis System for DTV Field Test (DTV 필드테스트를 위한 통합 측정 및 분석 시스템 개발)

  • Kim Young-Min;Suh Young-Woo;Mok Ha-Kyun;Kwon Tae-Hoon;Lee Sang-Gil
    • Journal of Broadcast Engineering
    • /
    • v.10 no.4 s.29
    • /
    • pp.599-609
    • /
    • 2005
  • There are many test parameters in the DTV measurement, which uses several test measuring instruments and miscellaneous devices. To operate all of those devices and analyse test results is a tedious and time-consuming process with a high error rate committed by inexperienced test crews. In this paper, we propose an integrated DTV measurement and analysis system(IMAS) that remotely controls and manages any instruments with standard network interface. This system can take, organize, store the field data into an integrated database and easily produce systematic output according to user-defined form. It can also measure several types of digital broadcasting signals such as DTV, DMB, DAB with generalized measurement procedures. Proposed measurement system was applied in the DTV field test by KBS and proved that it could enhance the accuracy and efficiency of entire test sequences and also dramatically reduce measurement time compared to conventional measurement systems.

Automatioc Density Measurement System Using Optical Lens in High Speed Textile Fabrication Process (고속의 직물 제직 공정에서 광학적 렌즈를 이용한 자동 밀도 측정 시스템)

  • Lee, Eung-Joo;Hyun, Eung-Joo;Jeong, In-Gab
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.1
    • /
    • pp.111-118
    • /
    • 1998
  • The density of fabric is a very important parameter in many fabric production processes. However, in the textile fabrication factories, textile density measurement process has been done inefficiently by handicraft. Thus, exact textile density measurement process is necessary to fabricate high quality textile through weft straighten. In this paper, we propose an automatic textile density measurement system to measure textile density automatically and to improve fabrication efficiency. The proposed system uses cylindrical lens to optically scan the weftl information of the fabric as well as convex lens to enlarge the weft images. The proposed system improves textile quality and provides constant density value to the whole textile range in the high speed fabrication process.

  • PDF

Self-Learning Supervisory Control of a Power Transmission System in a Construction Vehicle during Inertia Phase (건설장비용 동력전달계의 관성영역에서의 자기학습 제어기법)

  • Choi, Gil-Woo;Hahn, Jin-Oh;Hur, Jae-Woong;Cho, Young-Man;Lee, Kyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.723-729
    • /
    • 2001
  • Electro-hydraulic shift control of a vehicle automatic transmission has been predominantly carried out via an open-loop control based on numerous time-consuming calibrations. Despite remarkable success in practice, the variations of system characteristics inevitably deteriorate the performance of the tuned open-loop controller. As a result, the controller parameters need to be continuously updated in order to maintain satisfactory shift quality. This paper presents a self-learning algorithm for automatic transmission shift control in a construction vehicle during inertia phase. First, an observer reconstructs the turbine acceleration signal (impossible to measure in a construction vehicle) from the readily accessible turbine speed measurement. Then, a control algorithm based on a quadratic function of the turbine acceleration is shown to guarantee the asymptotic convergence (within a specified target bound) of the error between the actual and the desired turbine accelerations. A Lyapunov argument plays a crucial role in deriving adaptive laws for control parameters. The simulation and hardware-in-the-loop simulation (HILS) studies show that the proposed algorithm actually delivers the promise of satisfactory performance despite the system characteristics variations and uncertainties.

  • PDF

Mass measuremeant of soilid density standard using weight exchanger (분동교환기를 이용한 고체밀도기준물의 질량측정)

  • 이용재;장경호;오재윤;정상덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1659-1662
    • /
    • 2003
  • The mass measurement of solid density standards using weight exchanger is described. KRISS(Korea Research Institute od Standards and Science) has several solid density standards. Their mass have been measured manually only using a mass comparator(Mettler, 1kg - 0.01mg). However, the uncertaity of the manual mass measurement is up to 300 microgarm much more than 32 microgram of advanced NMIS(National Metrology Institutes) for 1 kg silicon sphere which is primary density standards due to an eccentric error and buoyancy correction error. The new system with a weight exchanger is designed and built to improve the measurement accuracy. It comprises a weight exchager, a mass comparator, air density instruments, and application program for automatic measurement. It is evaluated by measuring several elements in an air tight chamber to verify the performance of it.

  • PDF

Multisensor System Integrating Optical Tactile and F/T Sensors for Determination of Type and Position of 3D Contact Surface (3차원 접촉면의 인식 및 위치의 결정의 위한 광촉각센서와 역각센서의 다중센서시스템)

  • 한헌수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.10-19
    • /
    • 1996
  • This paper presents a finger-shaped multisensor system which can measure the tyep and position of a target surface by contactl. The multi-sensor system consists of a sphere-shpaed optical tactile sensor located at the finger tip and a force/torque sensor located at the joint of a finger. The optial tactile sensor determines the type and position of the target surface using the shape and position of the CCD image of the touching area generated by a contact between the sensor and the taget surface. The force/torque sensor also determines the position and surface normal vector by applying the distributionof forces and torques t the contact point to the equations of finger shape. The measurements on the position and surface normal vector at a contact point obtined by two individual sensors are fused using a statistical method. The integrated sensor system has 0.8mm error in position measurement and 1.31$^{\circ}$ error in normal vector measurement. The developed sensor system has many applications, such as autonomous compliance control, automatic grasping and recognition, etc.

  • PDF

Development of Spectral Irradiance Measurement System (분광복사조도 측정 장치 개발)

  • Seo, Jung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.48-53
    • /
    • 2004
  • Spectral irradiance measurement system was developed to measure the spectral irradiance of optical sources in the wavelength range from 250[nm] to 1600[nm]. Our system is composed of source system, fore-optics, monochromator system, optical detector system, and automatic control system. Optical detector system with PMT, Si, InGaAs, and IR enhanced InGaAs detectors is used to measure the wide spectrum of optical sources in ultraviolet visible, and infrared wavelength regions. Spectral irradiance of the 1[kW] quartz-halogen tungsten lamp was measured and compared in the wavelength range from 250[nm] to 1600[nm]. The differences between our results and those reported by NIST are below 3[%], 3.5[%], and 5[%] in the wavelength range of 450∼700[nm], 700∼1600[nm], 250∼400[nm], respectively.

Implementation of Complex Growth-environment Control System in Greenhouse (온실 복합생장환경 관제 시스템 구현)

  • Cho, Hyun Wook;Cho, Jong Sik;Park, In Gon;Seo, Beom Seok;Kim, Chan Woo;Shin, Chang Sun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, Wireless sensor network technology applied to various greenhouse agro-industry items such as horticulture and local specialty etc., we was constructed automatic control system for optimum growth environment by measuring growth status and environmental change. existing monitoring systems of greenhouse gather information about growth environment depends on the temperature. but in this system, Can be efficient collection and control of information to construct wireless sensor network by growth measurement sensor and environment monitoring sensor inside of the greenhouse. The system is consists of sensor manager for information processing, an environment database that stores information collected from sensors, the GUI of show the greenhouse status, it gather soil and environment information to soil and environment(including weather) sensors, growth measurement sensor. In addition to support that soil information service shows the temperature, moisture, EC, ph of soil to user through the interaction of obtained data and Complex Growth Environment information service for quality and productivity can prevention and response by growth disease or disaster of greenhouse agro-industry items how temperature, humidity, illumination acquiring informationin greenhouse(strawberry, ginseng). To verify the executability of the system, constructing the complex growth environment measurement system using wireless sensor network in greenhouse and we confirmed that it is can provide our optimized growth environment information.

Statistical Prediction of False Alarm Rates in Automatic Vision Inspection System (결함크기 측정오차로 인한 오검률의 통계적 예측)

  • Joo, Young-Bok;Huh, Kyung-Moo;Park, Kil-Houm;Lee, Gyu-Bong;Han, Chan-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.163-165
    • /
    • 2009
  • Automatic Vision Inspection(AVI) systems automatically detect defect features and measure their sizes via camera vision. It is important to predict the performance of an AVI to meet customer's specification in advance. In this paper, we propose a statistical method for prediction of false alarm rate regarding inconsistency of defect size measuremet process. We only need are a simple experimental trial for repeated defect size measurement test. The statistical features from the experiement are utilized in the prediction process. Therefore, the proposed method is swift and easy to implement and use. The experiment shows a close prediction compared to manual inspection results.

  • PDF

Fitness Measurement system using deep learning-based pose recognition (딥러닝 기반 포즈인식을 이용한 체력측정 시스템)

  • Kim, Hyeong-gyun;Hong, Ho-Pyo;Kim, Yong-ho
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.97-103
    • /
    • 2020
  • The proposed system is composed of two parts, an AI physical fitness measurement part and an AI physical fitness management part. In the AI fitness measurement part, a guide to physical fitness measurement and accurate calculation of the measured value are performed through deep learning-based pose recognition. Based on these measurements, the AI fitness management part designs personalized exercise programs and provides them to dedicated smart applications. To guide the measurement posture, the posture of the subject to be measured is photographed through a webcam and the skeleton line is extracted. Next, the skeletal line of the learned preparation posture is compared with the extracted skeletal line to determine whether or not it is normal, and voice guidance is provided to maintain the normal posture.

A Study on Measurement Accuracy and Required Time based on SCPI of Power Meter in Ka Band (Ka 밴드에서 Power Meter 계측 명령어에 따른 측정 정확도와 소요시간에 대한 연구)

  • Cho, Tae-Chong;Shin, Suk-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.51-56
    • /
    • 2020
  • Measurement accuracy and required time is important to make ATE(Automatic test equipment) system in Ka band, and SCPI commands of power meter which is a representative RF test equipment are studied in this paper. Comparison data between FETCH and MEASURE which are SCPI commands are measured in 30 G ~ 31 GHz and -70 ~ +20 dBm using two power sensor. The data show that FETCH which is the fastest SCPI is able to get reliable data in linear interval above noise level. MEASURE which is the best accurate command takes longer time than FETCH, and the longest time is 13.2 seconds. These results offer that measurement accuracy and required time of the two SCPI for power meter and would be used as a guideline for efficient ATE system in Ka band.