• Title/Summary/Keyword: automatic forecasting functions

Search Result 6, Processing Time 0.024 seconds

Performance comparison for automatic forecasting functions in R (R에서 자동화 예측 함수에 대한 성능 비교)

  • Oh, Jiu;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.645-655
    • /
    • 2022
  • In this paper, we investigate automatic functions for time series forecasting in R system and compare their performances. For the exponential smoothing models and ARIMA (autoregressive integrated moving average) models, we focus on the representative time series forecasting functions in R: forecast::ets(), forecast::auto.arima(), smooth::es() and smooth::auto.ssarima(). In order to compare their forecast performances, we use M3-Competiti on data consisting of 3,003 time series and adopt 3 accuracy measures. It is confirmed that each of the four automatic forecasting functions has strengths and weaknesses in the flexibility and convenience for time series modeling, forecasting accuracy, and execution time.

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.

Establishment of flood forecasting and warning system in the un-gauged small and medium watershed through ODA (ODA사업을 통한 미계측 중소하천 유역 홍수예경보시스템 구축)

  • Koh, Deuk-Koo;Lee, Chihun;Jeon, Jeibok;Go, Sukhyon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.381-393
    • /
    • 2021
  • As part of the National Disaster Management Research Institute's Official Development Assistance (ODA) projects for transferring new technologies in the field of disaster-safety management, a flood forecasting and warning system was established in 2019 targeting the Borikhan in the Namxan River Basin in Bolikhamxai Province, Laos. In the target area, which is an ungauged small and medium river basin, observation stations for real-time monitoring of rainfall and runoff and alarm stations were installed, and a software that performs real-time data management and flood forecasting and warning functions was also developed. In order to establish a flood warning standard and develop a nomograph for flood prediction, hydraulic and hydrological analysis was performed based on the 30-year annual maximum daily rainfall data and river morphology survey results in the target area. This paper introduces the process and methodology used in this study, and presents the results of the system's applicability review based on the data observed and collected in 2020 after system installation.

Minimized Stock Forecasting Features Selection by Automatic Feature Extraction Method (자동 특징 추출기법에 의한 최소의 주식예측 특징선택)

  • Lee, Sang-Hong;Lim, Joon-S.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.206-211
    • /
    • 2009
  • This paper presents a methodology to 1-day-forecast stock index using the automatic feature extraction method based on the neural network with weighted fuzzy membership functions (NEWFM). The distributed non-overlap area measurement method selects the minimized number of input features by automatically removing the worst input features one by one. CPP$_{n,m}$(Current Price Position of the day n: a percentage of the difference between the price of the day n and the moving average from the day n-1 to the day n-m) and the 2 wavelet transformed coefficients from the recent 32 days of CPP$_{n,m}$ are selected as minimized features using bounded sum of weighted fuzzy membership functions (BSWFMs). For the data sets, from 1989 to 1998, the proposed method shows that the forecast rate is 60.93%.

The Development of Dual Structured Power Management System (이중화 구조를 가진 변전소자동화시스템의 개발)

  • Woo, Chun-Hee;Lee, Bo-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.275-288
    • /
    • 2010
  • In order to improve the quality of electricity in large scale power systems, stability of power system has to be achieved. This can be done by the means of preventative diagnosis of power equipments and protection, monitoring and control of the power system. Since the recent adoption of digital controllers, an improvement in stability was observed; in particular, IED, which contained self-diagnostic abilities such as fault tolerance, allowed for automatic recovery via redundancy or switching-over functions should there be faults with the equipments. Furthermore, communication lines have been hugely simplified, thus adding to the improvement in stability significantly. Taking these error reports and forecasting emergency reports and by effectively responding to them in the overiding controlling systems, high levels of system stability can be obtained. Power Management System that is being applied to automated power sub-stations, takes the IEC61850 international standard as its specification. In this paper, additional research into achieving stability of already developed PMS system and also the stability of the overall system was carried out, and the results of development of communication servers, which play a pivotal role in connecting systems, are stated.

Analysis of the Effect of Objective Functions on Hydrologic Model Calibration and Simulation (목적함수에 따른 매개변수 추정 및 수문모형 정확도 비교·분석)

  • Lee, Gi Ha;Yeon, Min Ho;Kim, Young Hun;Jung, Sung Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • An automatic optimization technique is used to estimate the optimal parameters of the hydrologic model, and different hydrologic response results can be provided depending on objective functions. In this study, the parameters of the event-based rainfall-runoff model were estimated using various objective functions, the reproducibility of the hydrograph according to the objective functions was evaluated, and appropriate objective functions were proposed. As the rainfall-runoff model, the storage function model(SFM), which is a lumped hydrologic model used for runoff simulation in the current Korean flood forecasting system, was selected. In order to evaluate the reproducibility of the hydrograph for each objective function, 9 rainfall events were selected for the Cheoncheon basin, which is the upstream basin of Yongdam Dam, and widely-used 7 objective functions were selected for parameter estimation of the SFM for each rainfall event. Then, the reproducibility of the simulated hydrograph using the optimal parameter sets based on the different objective functions was analyzed. As a result, RMSE, NSE, and RSR, which include the error square term in the objective function, showed the highest accuracy for all rainfall events except for Event 7. In addition, in the case of PBIAS and VE, which include an error term compared to the observed flow, it also showed relatively stable reproducibility of the hydrograph. However, in the case of MIA, which adjusts parameters sensitive to high flow and low flow simultaneously, the hydrograph reproducibility performance was found to be very low.