• Title/Summary/Keyword: automatic detection

Search Result 1,700, Processing Time 0.034 seconds

APPLICATION OF NEURAL NETWORK FOR THE CLOUD DETECTION FROM GEOSTATIONARY SATELLITE DATA

  • Ahn, Hyun-Jeong;Ahn, Myung-Hwan;Chung, Chu-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.34-37
    • /
    • 2005
  • An efficient and robust neural network-based scheme is introduced in this paper to perform automatic cloud detection. Unlike many existing cloud detection schemes which use thresholding and statistical methods, we used the artificial neural network methods, the multi-layer perceptrons (MLP) with back-propagation algorithm and radial basis function (RBF) networks for cloud detection from Geostationary satellite images. We have used a simple scene (a mixed scene containing only cloud and clear sky). The main results show that the neural networks are able to handle complex atmospheric and meteorological phenomena. The experimental results show that two methods performed well, obtaining a classification accuracy reaching over 90 percent. Moreover, the RBF model is the most effective method for the cloud classification.

  • PDF

DETECTION OF LANDSLIDE AREAS USING UNSUPERVISED CHANGE DETECTION WITH HIGH-RESOLUTION REMOTE SENSING IMAGES

  • Park No-Wook;Chi Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.233-235
    • /
    • 2005
  • This paper presents an unsupervised change detection methodology designed for the detection of landslide areas. The proposed methodology consists of two analytical steps: one for multi-temporal segmentation and the other for automatic selection of thresholding values. By considering the conditions of landslide occurrences and the spectral behavior of multi-temporal remote sensing images, some specific procedures are included in the analytical steps mentioned above. The effectiveness and applicability of the methodology proposed here were illustrated by a case study of the Gangneung area, Korea. The case study demonstrated that the proposed methodology could detect about $83\%$ of landslide occurrences.

  • PDF

Real-Time Traffic Sign Detection Using K-means Clustering and Neural Network (K-means Clustering 기법과 신경망을 이용한 실시간 교통 표지판의 위치 인식)

  • Park, Jung-Guk;Kim, Kyung-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.491-493
    • /
    • 2011
  • Traffic sign detection is the domain of automatic driver assistant systems. There are literatures for traffic sign detection using color information, however, color-based method contains ill-posed condition and to extract the region of interest is difficult. In our work, we propose a method for traffic sign detection using k-means clustering method, back-propagation neural network, and projection histogram features that yields the robustness for ill-posed condition. Using the color information of traffic signs enables k-means algorithm to cluster the region of interest for the detection efficiently. In each step of clustering, a cluster is verified by the neural network so that the cluster exactly represents the location of a traffic sign. Proposed method is practical, and yields robustness for the unexpected region of interest or for multiple detections.

Automatic Colorectal Polyp Detection in Colonoscopy Video Frames

  • Geetha, K;Rajan, C
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4869-4873
    • /
    • 2016
  • Colonoscopy is currently the best technique available for the detection of colon cancer or colorectal polyps or other precursor lesions. Computer aided detection (CAD) is based on very complex pattern recognition. Local binary patterns (LBPs) are strong illumination invariant texture primitives. Histograms of binary patterns computed across regions are used to describe textures. Every pixel is contrasted relative to gray levels of neighbourhood pixels. In this study, colorectal polyp detection was performed with colonoscopy video frames, with classification via J48 and Fuzzy. Features such as color, discrete cosine transform (DCT) and LBP were used in confirming the superiority of the proposed method in colorectal polyp detection. The performance was better than with other current methods.

Scale Invariant Target Detection using the Laplacian Scale-Space with Adaptive Threshold (라플라스 스케일스페이스 이론과 적응 문턱치를 이용한 크기 불변 표적 탐지 기법)

  • Kim, Sung-Ho;Yang, Yu-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.66-74
    • /
    • 2008
  • This paper presents a new small target detection method using scale invariant feature. Detecting small targets whose sizes are varying is very important to automatic target detection. Scale invariant feature using the Laplacian scale-space can detect different sizes of targets robustly compared to the conventional spatial filtering methods with fixed kernel size. Additionally, scale-reflected adaptive thresholding can reduce many false alarms. Experimental results with real IR images show the robustness of the proposed target detection in real world.

A Study on Flame and Smoke Detection Method of a Tunnel Fire (터널 화재의 화염 및 연기 검출 기법 연구)

  • Lee, Jeong-Hun;Lee, Byoung-Moo;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1027-1028
    • /
    • 2008
  • In this paper, we proposed image-processing technique for automatic real-time fire and smoke detection in tunnel fire environment. To minimize false detection of fire in tunnel we used motion information of video sequence. And this makes it possible to detect exact position of event in early stage with detection, test, and verification procedures. In addition, by comparing false detection elimination results of each step, we have proved the validity and efficiency of proposed algorithm.

  • PDF

The Development of Surface Inspection System Using the Real-time Image Processing (실시간 영상처리를 이용한 표면흠검사기 개발)

  • 이종학;박창현;정진양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.171-171
    • /
    • 2000
  • We have developed m innovative surface inspection system for automated quality control for steel products in POSCO. We had ever installed the various kinds of surface inspection systems, such as a linear CCD and a laser typed surface inspection systems at cold rolled strips production lines. But, these systems cannot fulfill the sufficient detection and classification rate, and real time processing performance. In order to increase detection and classification rate, we have used the Dark, Bright and Transition Field illumination and area type CCD camera, and fur the real time image processing, parallel computing has been used. In this paper, we introduced the automatic surface inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms and its performance obtained at the production line.

  • PDF

A Video Smoke Detection Algorithm Based on Cascade Classification and Deep Learning

  • Nguyen, Manh Dung;Kim, Dongkeun;Ro, Soonghwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6018-6033
    • /
    • 2018
  • Fires are a common cause of catastrophic personal injuries and devastating property damage. Every year, many fires occur and threaten human lives and property around the world. Providing early important sign for early fire detection, and therefore the detection of smoke is always the first step in fire-alarm systems. In this paper we propose an automatic smoke detection system built on camera surveillance and image processing technologies. The key features used in our algorithm are to detect and track smoke as moving objects and distinguish smoke from non-smoke objects using a convolutional neural network (CNN) model for cascade classification. The results of our experiment, in comparison with those of some earlier studies, show that the proposed algorithm is very effective not only in detecting smoke, but also in reducing false positives.

Abnormal Situation Detection on Surveillance Video Using Object Detection and Action Recognition (객체 탐지와 행동인식을 이용한 영상내의 비정상적인 상황 탐지 네트워크)

  • Kim, Jeong-Hun;Choi, Jong-Hyeok;Park, Young-Ho;Nasridinov, Aziz
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.186-198
    • /
    • 2021
  • Security control using surveillance cameras is established when people observe all surveillance videos directly. However, this task is labor-intensive and it is difficult to detect all abnormal situations. In this paper, we propose a deep neural network model, called AT-Net, that automatically detects abnormal situations in the surveillance video, and introduces an automatic video surveillance system developed based on this network model. In particular, AT-Net alleviates the ambiguity of existing abnormal situation detection methods by mapping features representing relationships between people and objects in surveillance video to the new tensor structure based on sparse coding. Through experiments on actual surveillance videos, AT-Net achieved an F1-score of about 89%, and improved abnormal situation detection performance by more than 25% compared to existing methods.

X-Ray Security Checkpoint System Using Storage Media Detection Method Based on Deep Learning for Information Security

  • Lee, Han-Sung;Kim Kang-San;Kim, Won-Chan;Woo, Tea-Kun;Jung, Se-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1433-1447
    • /
    • 2022
  • Recently, as the demand for physical security technology to prevent leakage of technical and business information of companies and public institutions increases, the high tech companies are operating X-ray security checkpoints at building entrances to protect their intellectual property and technology. X-ray security checkpoints are operated to detect cameras and storage media that may store or leak important technologies in the bags of people entering and leaving the building. In this study, we propose an X-ray security checkpoint system that automatically detects a storage medium in an X-ray image using a deep learning based object detection method. The proposed system consists of an edge computing unit and a cloud-computing unit. We employ the RetinaNet for automatic storage media detection in the X-ray security checkpoint images. The proposed approach achieved mAP of 95.92% on private dataset.