• Title/Summary/Keyword: automatic correction

Search Result 254, Processing Time 0.029 seconds

Iterative Precision Geometric Correction for High-Resolution Satellite Images (고해상도 위성영상의 반복 정밀 기하보정)

  • Son, Jong-Hwan;Yoon, Wansang;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.431-447
    • /
    • 2021
  • Recently, the use of high-resolution satellites is increasing in many areas. In order to supply useful satellite images stably, it is necessary to establish automatic precision geometric correction technic. Geometric correction is the process that corrected geometric errors of satellite imagery based on the GCP (Ground Control Point), which is correspondence point between accurate ground coordinates and image coordinates. Therefore, in the automatic geometric correction process, it is the key to acquire high-quality GCPs automatically. In this paper, we proposed iterative precision geometry correction method. we constructed an image pyramid and repeatedly performed GCP chip matching, outlier detection, and precision sensor modeling in each layer of the image pyramid. Through this method, we were able to acquire high-quality GCPs automatically. we then improved the performance of geometric correction of high-resolution satellite images. To analyze the performance of the proposed method, we used KOMPSAT-3 and 3A Level 1R 8 scenes. As a result of the experiment, the proposed method showed the geometric correction accuracy of 1.5 pixels on average and a maximum of 2 pixels.

Cell Image Processing Methods for Automatic Cell Pattern Recognition and Morphological Analysis of Mesenchymal Stem Cells - An Algorithm for Cell Classification and Adaptive Brightness Correction -

  • Lim, Kitaek;Park, Soo Hyun;Kim, Jangho;SeonWoo, Hoon;Choung, Pill-Hoon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Purpose: The present study aimed at image processing methods for automatic cell pattern recognition and morphological analysis for tissue engineering applications. The primary aim was to ascertain the novel algorithm of adaptive brightness correction from microscopic images for use as a potential image analysis. Methods: General microscopic image of cells has a minor problem which the central area is brighter than edge-area because of the light source. This may affect serious problems to threshold process for cell-number counting or cell pattern recognition. In order to compensate the problem, we processed to find the central point of brightness and give less weight-value as the distance to centroid. Results: The results presented that microscopic images through the brightness correction were performed clearer than those without brightness compensation. And the classification of mixed cells was performed as well, which is expected to be completed with pattern recognition later. Beside each detection ratio of hBMSCs and HeLa cells was 95% and 92%, respectively. Conclusions: Using this novel algorithm of adaptive brightness correction could control the easier approach to cell pattern recognition and counting cell numbers.

Automatic Jitter Evaluation Method from Video using Optical Flow (Optical Flow를 사용한 동영상의 흔들림 자동 평가 방법)

  • Baek, Sang Hyune;Hwang, WonJun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1236-1247
    • /
    • 2017
  • In this paper, we propose a method for evaluating the uncomfortable shaking in the video. When you shoot a video using a handheld device, such as a smartphone, most of the video contains unwanted shake. Most of these fluctuations are caused by hand tremors that occurred during shooting, and many methods for correcting them automatically have been proposed. It is necessary to evaluate the shake correction performance in order to compare the proposed shake correction methods. However, since there is no standardized performance evaluation method, a correction performance evaluation method is proposed for each shake correction method. Therefore, it is difficult to make objective comparison of shake correction method. In this paper, we propose a method for objectively evaluating video shake. Automatically analyze the video to find out how much tremors are included in the video and how much the tremors are concentrated at a specific time. In order to measure the shaking index, we proposed jitter modeling. We applied the algorithm implemented by Optical Flow to the real video to automatically measure shaking frequency. Finally, we analyzed how the shaking indices appeared after applying three different image stabilization methods to nine sample videos.

Development of the Variable Parametric Performance Model of Torque Converter for the Analysis of the Transient Characteristics of Automatic Transmission (자동변속기의 과도특성 분석을 위한 토크 컨버터의 변동 파라미터 성능 모델 개발)

  • 임원식;이진원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.244-254
    • /
    • 2002
  • To enhance the acceleration performance and fuel consumption rate of a vehicle, the torque converter is modified or newly-developed with reliable analysis model. Up to recently, the one dimensional performance model has been used for the analysis and design of torque converter. The model is described with constant parameters based on the concept of mean flow path. When it is used in practice, some experiential correction factors are needed to minimize tole estimated error. These factors have poor physical meaning and cannot be applied confidently to the other specification of torque converter. In this study, the detail dynamic model of torque converter is presented to establish the physical meaning of correction factors. To verify the validity of model, performance test was carried out with various input speed and oil temperature. The effect of oil temperature on the performance is analysed, and it is applied to the dynamic model. And, to obtain the internal flow pattern of torque converter, CFD(Computational Fluid Dyanmics) analysis is carried out on three-dimensional turbulent flow. Correction factors are determined from the internal flow pattern, and their variation is presented with the speed ratio of torque converter. Finally, the sensitivity of correction factors to the speed ratio is studied for the case of changing capacity factor with maintaining torque ratio.

An algorithm of marking line correction for robot-based layout automation of building structures

  • Lim, Hyunsu;Kim, Taehoon;Cho, Kyuman;Kim, Taehoon;Kim, Chang-Won
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.312-318
    • /
    • 2022
  • Robot-based layout automation has been recently promoted for the purpose of improving productivity and quality. Marking robots have various functional demands to secure marking precision and environmental adaptability. In particular, in order to automate marking work of building structure, correction of the marking line through position recognition of rebars placed is required. Because the rebars must maintain a constant cover thickness from the formwork surface, if the rebars are out of planned position, the rebar or marking line need to be corrected to secure the cover thickness. Thus, the marking robot for structural work needs to have the function for determining the position correction of the rebar or the marking line. In order to judge the correction of marking line, it is required to measure the distance between the planned marking line and the rebar placed. Therefore, this study proposes an algorithm that can measure the distance between the planned line and the rebar, and correct marking line for the automatic operation of the marking robot. The results of this study will be utilized as a core function for unmanned operation of the marking robot and contribute to securing precise marking by reflecting construction errors.

  • PDF

Digital Magnetic Compass With Smart Correction Function - Recent Experimental Results and Further Works -

  • Yim, Jeong-Bin;Shim, Yeong-Ho;Kim, Chang-Kyeong;Choi, Gi-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.29-36
    • /
    • 2004
  • The paper describes recent experimental results on the development of Digital Magnetic Compass (DMC), which can provide smart automatic correction functions to the magnetic interferences. The design methodology of magnetic sensing circuit with ring-core fluxgate sensor is represented. The performance results of the sensing circuits are discussed with error analysis by polynomial regressions. As test results, the sensing circuit filtered only the second harmonic signal that is proportional to the direction of earth's magnetic field, and it leads to the obtainment of bearing information. In addition, the total residual errors of DMC can be analyzed by the adoption of polynomial regressions. It shown that the possibility of high precise DMC, in the future.

  • PDF

Measurement and Correction of PCB Alignment Error Using Two Cameras (2대의 카메라를 이용한 PCB의 위치 오차 측정 및 보정)

  • 김천환;신동원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.302-302
    • /
    • 2000
  • This paper presents the measurement and correction of PCB alignment errors for PCB-manufacturing machines. The conventional PCB-manufacturing machine doesn't have enough accuracy to accommodate the demand for high-resolution circuit pattern and high-density mounting capacity of electronic chips. It is because of alignment errors of PCB loaded to the PCB-manufacturing machine. Therefore, this study focuses on the development of the system which is able to measure and correct alignment errors whit high-accuracy. An automatic optical inspection part measures the PCB alignment error using two cameras, and the high-accuracy 3-axis stage makes correct of these error. The operating system is run in the environment of Window 98 (or NT). Finally we implemented this system to PCB screen printer and PCB exposure system.

  • PDF

Acoustic Modeling and Energy-Based Postprocessing for Automatic Speech Segmentation (자동 음성 분할을 위한 음향 모델링 및 에너지 기반 후처리)

  • Park Hyeyoung;Kim Hyungsoon
    • MALSORI
    • /
    • no.43
    • /
    • pp.137-150
    • /
    • 2002
  • Speech segmentation at phoneme level is important for corpus-based text-to-speech synthesis. In this paper, we examine acoustic modeling methods to improve the performance of automatic speech segmentation system based on Hidden Markov Model (HMM). We compare monophone and triphone models, and evaluate several model training approaches. In addition, we employ an energy-based postprocessing scheme to make correction of frequent boundary location errors between silence and speech sounds. Experimental results show that our system provides 71.3% and 84.2% correct boundary locations given tolerance of 10 ms and 20 ms, respectively.

  • PDF

3D INTERACTIVE SEGMENTATION OF BRAIN MRI

  • Levinski, Konstantin;Sourin, Alexei;Zagorodnov, Vitali
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.55-58
    • /
    • 2009
  • Automatic segmentation of brain MRI data usually leaves some segmentation errors behind that are to be subsequently removed interactively, using computer graphics tools. This interactive removal is normally performed by operating on individual 2D slices. It is very tedious and still leaves some segmentation errors which are not visible on the slices. We have proposed to perform a novel 3D interactive correction of brain segmentation errors introduced by the fully automatic segmentation algorithms. We have developed the tool which is based on 3D semi-automatic propagation algorithm. The paper describes the implementation principles of the proposed tool and illustrates its application.

  • PDF