• Title/Summary/Keyword: automated system

Search Result 3,112, Processing Time 0.033 seconds

The Precise Three Dimensional Phenomenon Modeling of the Cultural Heritage based on UAS Imagery (UAS 영상기반 문화유산물의 정밀 3차원 현상 모델링)

  • Lee, Yong-Chang;Kang, Joon-Oh
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.85-101
    • /
    • 2019
  • Recently, thank to the popularization of light-weight drone through the significant developments in computer technologies as well as the advanced automated procedures in photogrammetry, Unmanned Aircraft Systems have led to a growing interest in industry as a whole. Documentation, maintenance, and restoration projects of large scaled cultural property would required accurate 3D phenomenon modeling and efficient visual inspection methods. The object of this study verify on the accuracies achieved of 3D phenomenon reconstruction as well as on the validity of the preservation, maintenance and restoration of large scaled cultural property by UAS photogrammetry. The test object is cltural heritage(treasure 1324) that is the rock-carved standing Bodhisattva in Soraesan Mountain, Siheung, documented in Goryeo Period(918-1392). This standing Bodhisattva has of particular interests since it's size is largest stone Buddha carved in a rock wall and is wearing a lotus shaped crown that is decorated with arabesque patterns. The positioning accuracy of UAS photogrammetry were compared with non-target total station survey results on the check points after creating 3D phenomenal models in real world coordinates system from photos, and also the quantified informations documented by Culture Heritage Administration were compared with UAS on the bodhisattva image of thin lines. Especially, tests the validity of UAS photogrammetry as a alternative method of visual inspection methods. In particular, we examined the effectiveness of the two techniques as well as the relative fluctuation of rock surface for about 2 years through superposition analysis of 3D points cloud models produced by both UAS image analysis and ground laser scanning techniques. Comparison studies and experimental results prove the accuracy and efficient of UAS photogrammetry in 3D phenomenon modeling, maintenance and restoration for various large-sized Cultural Heritage.

Automated Clothing Analysis System through Image Analysis (이미지 분석을 통한 자동화 의류 분석 시스템)

  • Choi, Moon-hyuk;Lee, Seok-jun;Lee, Hak-jae;Kim, So-yeong;Moon, Il-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.313-315
    • /
    • 2019
  • Although Korea's fashion market has negative growth, it has been growing again since 2018. This phenomenon means that people are becoming more interested in fashion. As interest in fashion grows, people visit various community sites for reference to find a suitable coordination for themselves. Most community sites, however, are manually categorizing each garment. Not only do these tasks take a lot of time, but they also make it difficult to search for multiple clothing at the same time. In other words, I can't choose what I want at the same time, and if I choose what I want, I have to look at what the model is wearing and refer to it. The problem with this may not help because the coordination in which the model provided is worn is more likely to be the one that the user does not want. In this paper, when the image is uploaded to improve the problem, the clothing is analyzed with AI analysis model and automatically classified and stored. Therefore, not only can you search for one clothes in the existing way, but you can also search for multiple clothes at the same time. The service is expected to allow more people to easily find and refer to the code for themselves.

  • PDF

Evaluation of Parameter Estimation Method for Design Rainfall Estimation (설계강우량 산정을 위한 매개변수 추정방법 평가)

  • Kim, Kwihoon;Jun, Sang-Min;Jang, Jeongyeol;Song, Inhong;Kang, Moon-Seong;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.87-96
    • /
    • 2021
  • Determining design rainfall is the first step to plan an agricultural drainage facility. The objective of this study is to evaluate whether the current method for parameter estimation is reasonable for computing the design rainfall. The current Gumbel-Kendall (G-K) method was compared with two other methods which are Gumbel-Chow (G-C) method and Probability weighted moment (PWM). Hourly rainfall data were acquired from the 60 ASOS (Automated Synoptic Observing System) stations across the nation. For the goodness-of-fit test, this study used chi-squared (𝛘2) and Kolmogorov-Smirnov (K-S) test. When using G-K method, 𝛘2 statistics of 18 stations exceeded the critical value (𝑥2a=0.05,df=4=9.4877) and 10, 3 stations for G-C method, PWM method respectively. For K-S test, none of the stations exceeded the critical value (Da=0.05n=0.19838). However, G-K method showed the worst performances in both tests compared to other methods. Subsequently, this study computed design rainfall of 48-hour duration in 60 ASOS stations. G-K method showed 5.6 and 6.4% higher average design rainfall and 15.2 and 24.6% higher variance compared to G-C and PWM methods. In short, G-K showed the worst performance in goodness-of-fit tests and showed higher design rainfall with the least robustness. Likewise, considering the basic assumptions of the design rainfall estimation, G-K is not an appropriate method for the practical use. This study can be referenced and helpful when revising the agricultural drainage standards.

Sound Visualization based on Emotional Analysis of Musical Parameters (음악 구성요소의 감정 구조 분석에 기반 한 시각화 연구)

  • Kim, Hey-Ran;Song, Eun-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.104-112
    • /
    • 2021
  • In this study, emotional analysis was conducted based on the basic attribute data of music and the emotional model in psychology, and the result was applied to the visualization rules in the formative arts. In the existing studies using musical parameter, there were many cases with more practical purposes to classify, search, and recommend music for people. In this study, the focus was on enabling sound data to be used as a material for creating artworks and used for aesthetic expression. In order to study the music visualization as an art form, a method that can include human emotions should be designed, which is the characteristics of the arts itself. Therefore, a well-structured basic classification of musical attributes and a classification system on emotions were provided. Also, through the shape, color, and animation of the visual elements, the visualization of the musical elements was performed by reflecting the subdivided input parameters based on emotions. This study can be used as basic data for artists who explore a field of music visualization, and the analysis method and work results for matching emotion-based music components and visualizations will be the basis for automated visualization by artificial intelligence in the future.

Economic Analysis on the Automation System of the Cultivation Process in the Plant Factory (식물공장 재배 공정 자동화 시스템의 경제성 분석)

  • Jung, Mincheol;Kim, Handon;Kim, Jimin;Choi, Jeongmin;Jang, Hyounseung;Jo, Soun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • A plant factory is a facility that creates an artificial environment in a controlled space and produces plants systematically through automated facilities. However, automation in the cultivation process is insufficient compared to the internal environment control technology in plant factories. This causes the problem of an increase in operating costs due to the input of a large number of workers. Therefore, this study aims to evaluate economic feasibility by comparing before and after introducing automation in the cultivation process of plant factories. The target plant factory to be analyzed was selected, and the break-even point analysis method was used by comparing the cost required compared to the operating period. As a result, the break-even point was analyzed to be 3.4 years when automation was introduced into six processes for plant cultivation. Therefore, it can be judged that the introduction of automation is excellent in terms of economic feasibility when the target plant factory has been operated for more than 3.4 years. This study is expected to be used as basic data to analyze the economic feasibility of introducing automation in domestic and foreign plant factories.

Automated Image Matching for Satellite Images with Different GSDs through Improved Feature Matching and Robust Estimation (특징점 매칭 개선 및 강인추정을 통한 이종해상도 위성영상 자동영상정합)

  • Ban, Seunghwan;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1257-1271
    • /
    • 2022
  • Recently, many Earth observation optical satellites have been developed, as their demands were increasing. Therefore, a rapid preprocessing of satellites became one of the most important problem for an active utilization of satellite images. Satellite image matching is a technique in which two images are transformed and represented in one specific coordinate system. This technique is used for aligning different bands or correcting of relative positions error between two satellite images. In this paper, we propose an automatic image matching method among satellite images with different ground sampling distances (GSDs). Our method is based on improved feature matching and robust estimation of transformation between satellite images. The proposed method consists of five processes: calculation of overlapping area, improved feature detection, feature matching, robust estimation of transformation, and image resampling. For feature detection, we extract overlapping areas and resample them to equalize their GSDs. For feature matching, we used Oriented FAST and rotated BRIEF (ORB) to improve matching performance. We performed image registration experiments with images KOMPSAT-3A and RapidEye. The performance verification of the proposed method was checked in qualitative and quantitative methods. The reprojection errors of image matching were in the range of 1.277 to 1.608 pixels accuracy with respect to the GSD of RapidEye images. Finally, we confirmed the possibility of satellite image matching with heterogeneous GSDs through the proposed method.

Design of Low-cost Automated Ventilator Using AMBU-bag (암부백을 이용한 저가형 자동 인공호흡기 설계 및 제작)

  • Shin, Hee-Bin;Lee, Hyo-Kyeong;Oh, Ga-Young
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • This study proposes the design and implementation of a low-cost emergency ventilator which can be helpful during the COVID-19 pandemic where the supply of automatic ventilators is not smooth compared with the urgent demand worldwide. Easy implementation and lower price were made possible by using AMBU-bag and off-the-shelf embedded micro-controller board. Moreover, while 3D printing is used by companies and experts around the world to build prototype hardware, materials which are readily available from surrounding environments so that people in countries where it is difficult to access many advanced technologies could manufacture the system. The design features AMBU-bag automation, not use 3D printing, and it can contrl speed. By allowing speed control, ventilation can be performed according to the conditions of the patient being used. A complementary point in the study is that it is difficult to fix the start point of the wiper motor used first. A method for complementing this is a method for replacing the brush DC motor with a position feedback function. Secondly, the AMBU-bag may wear out in the long-term process of compressing the AMBU-bag because the arm and the fixing frame are made of wood. To complement this, the part of fixing frame and arm parts that the AMBU-bag touches need to be wrapped in a material such as silicon to minimize friction.

Comparison and Analysis of Drought Index based on MODIS Satellite Images and ASOS Data for Gyeonggi-Do (경기도 지역에 대한 MODIS 위성영상 및 지점자료기반 가뭄지수의 비교·분석)

  • Yu-Jin, KANG;Hung-Soo, KIM;Dong-Hyun, KIM;Won-Joon, WANG;Han-Eul, LEE;Min-Ho, SEO;Yun-Jae, CHOUNG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.1-18
    • /
    • 2022
  • Currently, the Korea Meteorological Administration evaluates the meteorological drought by region using SPI6(standardized precipitation index 6), which is a 6-month cumulative precipitation standard. However, SPI is an index calculated only in consideration of precipitation at 69 weather stations, and the drought phenomenon that appears for complex reasons cannot be accurately determined. Therefore, the purpose of this study is to calculate and compare SPI considering only precipitation and SDCI (Scaled Drought Condition Index) considering precipitation, vegetation index, and temperature in Gyeonggi. In addition, the advantages and disadvantages of the station data-based drought index and the satellite image-based drought index were identified by using results calculated through the comparison of SPI and SDCI. MODIS(MODerate resolution Imaging Spectroradiometer) satellite image data, ASOS(Automated Synoptic Observing System) data, and kriging were used to calculate SDCI. For the duration of precipitation, SDCI1, SDCI3, and SDCI6 were calculated by applying 1-month, 3-month, and 6-month respectively to the 8 points in 2014. As a result of calculating the SDCI, unlike the SPI, drought patterns began to appear about 2-month ago, and drought by city and county in Gyeonggi was well revealed. Through this, it was found that the combination of satellite image data and station data increased efficiency in the pattern of drought index change, and increased the possibility of drought prediction in wet areas along with existing dry areas.

Implementation of a Transition Rule Model for Automation of Tracking Exercise Progression (운동 과정 추적의 자동화를 위한 전이 규칙 모델의 구현)

  • Chung, Daniel;Ko, Ilju
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.5
    • /
    • pp.157-166
    • /
    • 2022
  • Exercise is necessary for a healthy life, but it is recommended that it be conducted in a non-face-to-face environment in the context of an epidemic such as COVID-19. However, in the existing non-face-to-face exercise content, it is possible to recognize exercise movements, but the process of interpreting and providing feedback information is not automated. Therefore, in this paper, to solve this problem, we propose a method of creating a formalized rule to track the contents of exercise and the motions that constitute it. To make such a rule, first make a rule for the overall exercise content, and then create a tracking rule for the motions that make up the exercise. A motion tracking rule can be created by dividing the motion into steps and defining a key frame pose that divides the steps, and creating a transition rule between states and states represented by the key frame poses. The rules created in this way are premised on the use of posture and motion recognition technology using motion capture equipment, and are used for logical development for automation of application of these technologies. By using the rules proposed in this paper, not only recognizing the motions appearing in the exercise process, but also automating the interpretation of the entire motion process, making it possible to produce more advanced contents such as an artificial intelligence training system. Accordingly, the quality of feedback on the exercise process can be improved.

Development of Automated Statistical Analysis Tool using Measurement Data in Cable-Supported Bridges (특수교 계측 데이터 자동 통계 분석 툴 개발)

  • Kim, Jaehwan;Park, Sangki;Jung, Kyu-San;Seo, Dong-Woo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.79-88
    • /
    • 2022
  • Cable-supported bridges, as important large infrastructures, require a long-term and systematic maintenance strategy. In particular, various methods have been proposed to secure safety for the bridges, such as installing various types of sensor on members in the bridges, and setting management thresholds. It is evidently necessary to propose a strategic plan to efficiently manage increasing number of cable-supported bridges and data collected from a number of sensors. This study aims to develop an analysis tool that can automatically remove abnormal signals and calculate statistical results for the purpose of efficiently analyzing a wide range of data collected from a long span bridge measurement system. To develop the tool, basic information such as the types and quantity of sensors installed in long span bridges and signal characteristics of the collected data were analyzed. Thereafter, the Humpel filtering method was used to determine the presence or absence of an abnormality in the signal and then filtered. The statistical results with filtered data were shown. Finally, one cable-stayed bridge and one suspension bridge currently in use were chosen as the target bridges to verify the performance of the developed tool. Signal processing and statistical analysis with the tool were performed. The results are similar to the results reported in the existing work.