• Title/Summary/Keyword: automated synoptic observing system

Search Result 59, Processing Time 0.025 seconds

Development and Assessment of Environmental Water Seasonal Outlook Method for the Urban Area (도시지역에 대한 환경용수의 계절전망 기법 개발 및 평가)

  • So, Jae-Min;Kim, Jeong-Bae;Bae, Deg-Hyo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.67-76
    • /
    • 2018
  • There are 34 mega-cities with a population of more than 10 million in the world. One of the highly populated cities in the world is Seoul in South Korea. Seoul receives $1,140million\;m^3/year$ for domestic water, $2million\;m^3/year$ for agricultural water and $6million\;m^3/year$ for industrial water from multi-purpose dams. The maintenance water used for water conservation, ecosystem protection and landscape preservation is $158million\;m^3/year$, which is supplied from natural precipitation. Recently, the use of the other water for preservation of water quality and ecosystem protection in urban areas is increasing. The objectives of this study is to develop the seasonal forecast method of environmental water in urban areas (Seoul, Daejeon, Gwangju, Busan) and to evaluate its predictability. In order to estimate the seasonal outlook information of environmental water from Land Surface Model (LSM), we used the observation weather data of Automated Synoptic Observing System (ASOS) sites, forecast and hind cast data of GloSea5. In the past 30 years (1985 ~ 2014), precipitation, natural runoff and Urban Environmental Water Index (UEI) were analyzed in the 4 urban areas. We calculated the seasonal outlook values of the UEI based on GloSea5 for 2015 year and compared it to UEI based on observed data. The seasonal outlook of UEI in urban areas presented high predictability in the spring, autumn and winter. Studies have depicted that the proposed UEI will be useful for evaluating urban environmental water and the predictability of UEI using GloSea5 forecast data is likely to be high in the order of autumn, winter, spring and summer.

Blocking Effects of Buildings on Sunshine Duration at Seoul and Daegu ASOSs (서울·대구 ASOS 지점에서 건물에 의한 일조 차단 영향)

  • Park, Soo-Jin;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • In this study, the observational environment for sunshine duration at Seoul and Daegu Automated Synoptic Observing Systems (ASOSs) was analyzed using a numerical model. In order to analyze the effects of topography and buildings on observational environment for sunshine duration, the model domains including the elevated building and mountainous areas around Seoul and Daegu ASOSs were considered. Three dimensional topography and buildings used as input data for the numerical model were constructed using a geographic information system (GIS) data. Solar azimuth and altitude angles calculated for the analysis period (one-week for each season in 2008) in this study were validated against those by Korea Astronomy and Space Science Institute (KASI). The starting and ending times of sunshine duration observed at ASOSs largely differed from the respective sunrise and sunset times simply calculated using solar angles and information of ASOSs' latitude and longitude, because uneven topography and elevated buildings around ASOSs cut off sunshine duration right after the sunrise and right before the sunset. The model produced the sunshine indices for Seoul and Daegu ASOSs with the time interval of one minute and the period of one week for each season and we compared the hourly averaged indices with those observed at the ASOSs. One week of which the cloudiness is lowest for each season is selected for analysis. Not only the adjacent buildings but also distant buildings and mountain cut off sunshine duration right after the sunrise and right before the sunset. The buildings and topography cutting off sunshine duration were found for each analyzing date. It was suggested that, in order to evaluate the observational environment for sunshine duration, we need to consider even the information of topography and/or building far away from ASOSs. This study also showed that the analyzing method considering the GIS data is very useful for evaluation of observational environment for sunshine duration.

Analysis and Prediction of Bicycle Traffic Accidents in Korea (자전거 교통 사고 현황 및 예측 분석)

  • Choi, Seunghee;Lee, Goo Yeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.89-96
    • /
    • 2016
  • According to the promoting policy for bicycle riding, the bicycle road infrastructure in Korea has been widely established. As the number of bicycle rider increases, bicycle traffic accidents also increase year after year. In this paper, we analyze bicycle traffic accident data from 2007 to 2014 which is provided by Road Traffic Authority and present statistical results of bicycle traffic accidents. And also regression analysis is applied to predict the number of daily traffic accidents in Seoul using ASOS(Automated Synoptic Observing System) climate data observed in the Seoul sector which are provided by Korea Meteorological Administration. In addition, decision tree analysis techniques are used to forecast the level of traffic accidents severity. In the analytic results of this research, we expect that it will be helpful to establish the collective policy of bicycle accident data and protective strategy in order to reduce the number of bicycle accidents.

Thermodynamic Characteristics Associated with Localized Torrential Rainfall Events in the Middle West Region of Korean Peninsula (한반도 중서부 국지성 집중호우와 관련된 열역학적 특성)

  • Jung, Sueng-Pil;Kwon, Tae-Yong;Han, Sang-Ok
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.457-470
    • /
    • 2014
  • Thermodynamic conditions related with localized torrential rainfall in the middle west region of Korean peninsula are examined using radar rain rate and radiosonde observational data. Localized torrential rainfall events in this study are defined by three criteria base on 1) any one of Automated Synoptic Observing System (ASOS) hourly rainfall exceeds $30mmhr^{-1}$ around Osan, 2) the rain (> $1mmhr^{-1}$) area estimated from radar reflectivity is less than $20,000km^2$, and 3) the rain (> $10mmhr^{-1}$) cell is detected clearly and duration is short than 24 hr. As a result, 13 cases were selected during the summer season of 10 years (2004-13). It was found that the duration, the maximum rain area, and the maximum volumetric rain rate of convective cells (> $30mmhr^{-1}$) are less than 9hr, smaller than $1,000km^2$, and $15,000{\sim}60,000m^3s^{-1}$ in these cases. And a majority of cases shows the following thermodynamic characteristics: 1) Convective Available Potential Energy (CAPE) > $800Jkg^{-1}$, 2) Convective Inhibition (CIN) < $40Jkg^{-1}$, 3) Total Precipitable Water (TPW) ${\approx}$ 55 mm, and 4) Storm Relative Helicity (SRH) < $120m^2s^{-2}$. These cases mostly occurred in the afternoon. These thermodynamic conditions indicated that these cases were caused by strong atmospheric instability, lifting to overcome CIN, and sufficient moisture. The localized torrential rainfall occurred with deep moisture convection result from the instability caused by convective heating.

Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme (Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정)

  • Kim, Sangwoo;Lee, Taehwa;Chun, Beomseok;Jung, Younghun;Jang, Won Seok;Sur, Chanyang;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.11-20
    • /
    • 2020
  • We estimated the spatio-temporally distributed soil moisture using Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images and soil moisture data assimilation technique in South Korea. Soil moisture data assimilation technique can extract the hydraulic parameters of soils using observed soil moisture and GA (Genetic Algorithm). The SWAP (Soil Water Atmosphere Plant) model associated with a soil moisture assimilation technique simulates the soil moisture using the soil hydraulic parameters and meteorological data as input data. The soil moisture based on Sentinel-1A/B was validated and evaluated using the pearson correlation and RMSE (Root Mean Square Error) analysis between estimated soil moisture and TDR soil moisture. The soil moisture data assimilation technique derived the soil hydraulic parameters using Sentinel-1A/B based soil moisture images, ASOS (Automated Synoptic Observing System) weather data and TRMM (Tropical Rainfall Measuring Mission)/GPM (Global Precipitation Measurement) rainfall data. The derived soil hydrological parameters as the input data to SWAP were used to simulate the daily soil moisture values at the spatial domain from 2001 to 2018 using the TRMM/GPM satellite rainfall data. Overall, the simulated soil moisture estimates matched well with the TDR measurements and Sentinel-1A/B based soil moisture under various land surface conditions (bare soil, crop, forest, and urban).

Evaluation of Reference Evapotranspiration in South Korea according to CMIP5 GCMs and Estimation Methods (CMIP5 GCMs과 추정 방법에 따른 우리나라 기준증발산량 평가)

  • Park, Jihoon;Cho, Jaepil;Lee, Eun-Jeong;Jung, Imgook
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.4
    • /
    • pp.153-168
    • /
    • 2017
  • The main objective of this study was to assess reference evapotranspiration based on multiple GCMs (General Circulation Models) and estimation methods. In this study, 10 GCMs based on the RCP (Representative Concentration Pathway) 4.5 scenario were used to estimate reference evapotranspiration. 54 ASOS (Automated Synoptic Observing System) data were constructed by statistical downscaling techniques. The meteorological variables of precipitation, maximum temperature and minimum temperature, relative humidity, wind speed, and solar radiation were produced using GCMs. For the past and future periods, we estimated reference evapotranspiration by GCMs and analyzed the statistical characteristics and analyzed its uncertainty. Five methods (BC: Blaney-Criddle, HS: Hargreaves-Samani, MK: Makkink, MS: Matt-Shuttleworth, and PM: Penman-Monteith) were selected to analyze the uncertainty by reference evapotranspiration estimation methods. We compared the uncertainty of reference evapotranspiration method by the variable expansion and analyzed which variables greatly influence reference evapotranspiration estimation. The posterior probabilities of five methods were estimated as BC: 0.1792, HS: 0.1775, MK: 0.2361, MS: 0.2054, and PM: 0.2018. The posterior probability indicated how well reference evapotranspiration estimated with 10 GCMs for five methods reflected the estimated reference evapotranspiration using the observed data. Through this study, we analyzed the overall characteristics of reference evapotranspiration according to GCMs and reference evapotranspiration estimation methods The results of this study might be used as a basic data for preparing the standard method of reference evapotranspiration to derive the water management method under climate change.

Accuracy Evaluation of GPM Satellite-derived Precipitation Data (GPM 위성강우 정확도 평가)

  • Kim, Joo Hun;Choi, Yun Seok;Kim, Kyeong Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.601-601
    • /
    • 2016
  • 글로벌 위성 기반의 강수량 관측에 대한 역사는 1979년에 Arkin의 의해 제안된 IR방법에 의해 위성으로 부터 강우자료를 유도하는 개념이 도입된 이후 1987년 해양에서의 비교적 정확한 강수량 추정이 가능한 다중 채널의 마이크로파(MW) 복사계를 이용한 방법으로 위성강수 추정에 대한 연구가 활발히 진행되었다. 이 후 두 IR과 MW를 혼합한 방법에서, 또다시 1997년 TRMM위성의 PR(Precpipitation Radar)의 레이더를 이용하는 방법, 그리고 2014년 GPM 핵심 위성(GPM Core Observatory)에 탑재된 Dual PR에 의한 방법으로 위성강수의 정확도를 매우 높여가고 있다. 전지구강수관측위성(GPM, Global Precipitation Measurement Mission) 사업은 미국우주항공국(NASA)과 일본우주항공국(JAXA)의 주도로 전 지구 규모의 강수관측을 목적으로 시작되었으며, 추가 파트너로 프랑스의 CNES(French Centre National d'?tudes Spatiales), 인도의 ISRO(Indian Space Research Organisation), 미국 NOAA, 그리고 유럽연합의 EUMETSAT(European Organisation for the Exploitation of Meteorological Satellites)가 참여하고 있다. 본 연구는 2014년 4월 발사된 GPM핵심 위성의 발사에 따라 제공되는 GPM 위성강우 자료의 정확도 평가를 목적으로 하고 있다. GPM 데이터는 Level-1에서 Level-3까지 다양한 데이터를 제공하고 있으며 본 연구에서는 Level-3의 IMERG 데이터를 이용하여 위성강우의 정확도를 평가하였다. IMERG 위성강우자료는 GPM 위성군의 모든 수동 MW 데이터를 조합하여 강우량을 추정하는 데이터이다. 자료의 시간적 범위는 2015년 8월 18일~8월 20일이고 공간적 범위는 한반도 영역으로 하였으며, 자료의 정확도 평가를 위한 지상계측자료는 기상청 ASOS(Automated Synoptic Observing System)의 강수량 자료를 이용하였다. 자료분석 결과 GPM에서 제공되는 IMERG 데이터의 공간적 분포는 그림 1과 같이 전라도 지역에 많은 강수가 분포하는 것을 확인할 수 있다. 이 기간 동안의 기상청 ASOS 관측 강수량 기록은 전국적으로 1순위가 고창군 25.5mm, 2순위가 부안군 21.9mm, 3순위가 정읍 및 영광군이 19.0mm로 위성으로부터 관측된 값과 지상계측값의 공간적 분포가 매우 유사한 경향을 보이는 것으로 분석되었다. 향후 위성강우 및 지상계측강우의 시계열적 정확도와 총강우량 등의 정확도 평가를 수행할 계획이다.

  • PDF

Computation of Criterion Rainfall for Urban Flood by Logistic Regression (로지스틱 회귀에 의한 도시 침수발생의 한계강우량 산정)

  • Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.713-723
    • /
    • 2019
  • Due to the climate change and various rainfall pattern, it is difficult to estimate a rainfall criterion which cause inundation for urban drainage districts. It is necessary to examine the result of inundation analysis by considering the detailed topography of the watershed, drainage system, and various rainfall scenarios. In this study, various rainfall scenarios were considered with the probabilistic rainfall and Huff's time distribution method in order to identify the rainfall characteristics affecting the inundation of the Hyoja drainage basin. Flood analysis was performed with SWMM and two-dimensional inundation analysis model and the parameters of SWMM were optimized with flood trace map and GA (Genetic Algorithm). By linking SWMM and two-dimensional flood analysis model, the fitness ratio between the existing flood trace and simulated inundation map turned out to be 73.6 %. The occurrence of inundation according to each rainfall scenario was identified, and the rainfall criterion could be estimated through the logistic regression method. By reflecting the results of one/two dimensional flood analysis, and AWS/ASOS data during 2010~2018, the rainfall criteria for inundation occurrence were estimated as 72.04 mm, 146.83 mm, 203.06 mm in 1, 2 and 3 hr of rainfall duration repectively. The rainfall criterion could be re-estimated through input of continuously observed rainfall data. The methodology presented in this study is expected to provide a quantitative rainfall criterion for urban drainage area, and the basic data for flood warning and evacuation plan.

Possibility of Estimating Daily Mean Temperature for Improving the Accuracy of Temperature in Forage Yield Prediction Model (풀사료 수량예측모델의 온도 정밀도 향상을 위한 일평균온도 추정 가능성 검토)

  • Kang, Shin Gon;Jo, Hyun Wook;Kim, Ji Yung;Kim, Kyeong Dae;Lee, Bae Hun;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.56-61
    • /
    • 2021
  • This study was conducted to determine the possibility of estimating the daily mean temperature for a specific location based on the climatic data collected from the nearby Automated Synoptic Observing System (ASOS) and Automated Weather System(AWS) to improve the accuracy of the climate data in forage yield prediction model. To perform this study, the annual mean temperature and monthly mean temperature were checked for normality, correlation with location information (Longitude, Latitude, and Altitude) and multiple regression analysis, respectively. The altitude was found to have a continuous effect on the annual mean temperature and the monthly mean temperature, while the latitude was found to have an effect on the monthly mean temperature excluding June. Longitude affected monthly mean temperature in June, July, August, September, October, and November. Based on the above results and years of experience with climate-related research, the daily mean temperature estimation was determined to be possible using longitude, latitude, and altitude. In this study, it is possible to estimate the daily mean temperature using climate data from all over the country, but in order to improve the accuracy of daily mean temperature, climatic data needs to applied to each city and province.

A Study on the Effects of Wind Fence on the Dispersion of the Particles Emitted from the Construction Site Using GIS and a CFD Model (GIS와 CFD 모델을 활용한 건설 현장 방풍벽 설치가 비산 먼지 확산에 미치는 영향 연구)

  • Kim, Dong-Ju;Wang, Jang-Woon;Park, Soo-Jin;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.763-775
    • /
    • 2018
  • In this study, the effects of wind fences on the dispersion of the particles emitted from a constructing site located in the building-congested area in Busan, Korea, using geographic information system (GIS) and a computational fluid dynamics (CFD) model. We averaged the wind speeds observed for 10 years at the Busan automated synoptic observing system (ASOS) and we used the averaged wind speed as the wind speed at the reference height (10 m above the ground level). The numerical simulations were performed for 16 inflow directions, before and after the construction of wind fences with the heights of 5 m and 10 m (total 48 simulations). The detailed flows were analyzed for the northeasterly and south-southwesterly cases which predominantly observed at the Busan ASOS. In the northeasterly case, high concentration appeared at the elementary school next to the construction site due to transport by the airflow coming from the northeast. In the 5-m wind fence case, the wind speeds were slightly weaker and the spread of the fugitive dust was slightly less than those in the no wind fence case. In the 10-m wind fence case, the dust concentration at the elementary school has the maximum reduction of 37%. In the south-southwesterly case, the flow pattern became complicated in the construction site due to the terrain and buildings. Fugitive dust was stagnant at the south side of the construction site but rather spread to the north, increasing the concentration at the elementary school. After the wind fence was built, the concentrations inside the construction site became high as the wind speeds decreased inside, but, the concentrations in the elementary school rather decreased.