• Title/Summary/Keyword: automated highway system

Search Result 29, Processing Time 0.023 seconds

Hybrid Modeling and Control for Platoon Maneuvers in Automated Highway Systems (군집주행 기동을 위한 하이브리드 모델링 및 제어기 설계)

  • 전성민;최재원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1014-1022
    • /
    • 2002
  • An objective of Automated Highway Systems (AHS) is to increase the safety and throughput of the existing highway infrastructure by introducing traffic automation. AHS is an example of a large scale, multiagent complex dynamical system and is ideally suited for a hierarchical hybrid controller. We discuss a design issue of efficient hybrid controllers for the platoon maneuvers on AHS. For the modeling of a hybrid system including the merge and split operations, a safety distance policy is introduced for the merge and split operations. After that, the platoon system will be modeled by a hybrid system In addition, a hybrid controller for the proposed merge and split operation models is presented. Finally, the performance of the proposed hybrid control scheme is demonstrated via scenarios for platoon maneuvers.

SIMULATOR-BASED HUMAN FACTORS EVALUATION OF AUTOMATED HIGHWAY SYSTEM

  • Cha, D.W.;Park, P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.625-635
    • /
    • 2006
  • From a viewpoint of human factors, automated highway systems(AHS) can be defined as one of the newly developing human-machine systems that consist of humans(drivers and operators), machines(vehicles and facilities), and environments(roads and roadside environments). AHS will require a changed vehicle control process and driver-vehicle interface(DVI) comparing with conventional driving. This study introduces a fixed-based AHS simulator and provides questionnaire-based human factors evaluation results after three kinds of automated driving speed experiences in terms of road configuration, operation policies, information devices, and overall AHS use. In the simulator, the "shared space-at-grade" concept-based road configuration was virtually implemented on a portion of the Kyungbu highway in Korea, and heads-up display(HUD), AHS information display, and variable message signs(VMS) were installed for appropriate AHS DVI implementation. As the results, the subjects expressed positive opinions on the implemented road configuration, operation policies, and the overall use of AHS. The results of this study would be helpful in developing the road configuration and DVI design guideline as the basic human factors research for the future implementation of AHS.

Hybrid Controller Design for a Safe Lane Change Maneuver in Automated Highway Systems (차량 자동주행 시스템의 안전한 차선변경을 위한 하이브리드 제어기 설계)

  • 최재원;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.17-17
    • /
    • 2000
  • In this paper, we design a hybrid controller for a safe lane change maneuver in automated highway systems(AHS). The proposed hybrid controller consists of a supervisor which controls the behaviors of discrete-event dynamic systems, and a regulator which controls the operations of continuous-variable dynamic systems. The supervisor determines whether the system starts a maneuver or not, via a condition for a safety, and gives orders to the regulator for performing the maneuvers. And the regulator tracks the planned path generated in the supervisor. The conditions for a safe lane change maneuver are proposed using the velocity, the acceleration, and geometrical relationship of vehicles.

  • PDF

Fault-Tolerant Controller Design for Vehicles Platooning

  • Yoon, Gyeong-Hwan;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1853-1856
    • /
    • 2003
  • This paper considers the problem of longitudinal control of a platoon of automotive vehicles on a straight lane of a highway and proposes control laws in the event of loss of communication between the lead vehicle and the other vehicles in the platoon. Since safety plays a key role in the development of an Automated Highway System, fault-tolerant control is vital. In this paper, we develop a control algorithm in vehicle platooning and prove that this control algorithm is stable for certain class of faults such as parameter uncertainties. The performance of the controller is demonstrated through a series of simulations incorporating various vehicles and AHS faults. Results of simulation shows that the vehicles have good performance in spite of simple automotive and AHS failure, such as actuator failure,that is to say, engine input failure, communication failure between lead vehicle and the another vehicles.

  • PDF

Development and Usability Evaluation of Fixed-base AHS Simulator

  • Cha, Doo-Won;Park, Peom
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.57-62
    • /
    • 2002
  • This study described the specification and configuration of developed fixed-base AHS (Automated Highway System) simulator fur the human factors researches, and its usability evaluation results after riding 120, 140, and 160kph automated driving speed. As the results, this study suggested the subjects' preferences and opinions about simulator and AHS configurations that would help to establish the AHS R&D plan and driver-vehicle/road interface design guidelines as the basic researches of the AHS human factors.

  • PDF

The Study on an Automated Generation Method of Road Drawings using Road Survey Vehicle (도로교통안전점검차량을 이용한 도로의 자동도면화 생성 연구)

  • Lee, Jun Seok;Yun, Duk Geun;Park, Jae Hong
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.91-98
    • /
    • 2014
  • PURPOSES : This study is to develop a automate road mapping system using ARASEO(Automated Road Analysis and Safety Evaluation TOol) for road management. METHODS : The road survey van named ARASEO(Automated Road Analysis and Safety Evaluation TOol) was used to generate highway drawings for Korea National Road number 37 automatically. In order to generate the highway drawings for purpose of road management, it is required to acquired the information for highway alignment, road width and road facilities such as safety barrier and road sign. Therefore the survey van acquired and analyzed the road width, median and guardrail data using rear side laser sensor of ARASEO and recognized the traffic control sign and chevron sign using foreside camera images. Also the highway alignment which is the basic information for highway drawing can be analyzed by acquisition the every 1m positional and attitude data using GPU and IMU sensor and developed algorithm. Finally, in this research the CAD based drawing software was developed to draw highway drawing using the analysis result from ARASEO. RESULTS : This study showed the comparison result of the surveyed road width and drawing data. To make the drawing of the road, we made the Autocad ARX program witch run in CAD menu interface. CONCLUSIONS : Using this program we can create the road center line, every 500m horizontal and vertical ground plan drawing automatically.

Some Lessons Learned from Previous Studies in Cooperative Driving Automation (협력형 자율주행 기술 개발 동향과 시사점)

  • Jeon, Hyeonmyeong;Yang, Inchul;Kim, Hyoungsoo;Lee, Junhyung;Kim, Sun-Kyum;Jang, Jiyong;Kim, Jiyoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.62-77
    • /
    • 2022
  • A cooperative driving automation system is imperative to overcome the limitation of the stand-alone automated driving technology. By definition, a cooperative driving automation system refers to a technology in which an automated vehicle cooperates with other vehicles or infrastructure to increase driving efficiency and safety. Specifically, in this study, the technical elements necessary for the cooperative driving automation technology and the technological research trends were investigated. Subsequently, implications for future cooperative driving automation technology development were drawn through the research trends. Finally, the importance of cooperative driving automation technology and infra-guidance service for automated vehicles were discussed.

Control of Lane Change of Vehicles using Fuzzy Logic for the Intelligent Vehicle Highway System(IVHS) (IVHS에서의 Fuzzy 논리를 이용한 차량의 차선 변경 제어)

  • Lim, Hyung-Soon;Kim, Myung-Joong;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.465-467
    • /
    • 1998
  • A lane change maneuver is a part of lateral control of an automated highway system. Assuming no direct measurement of its position during transition from one lane to another. A vehicle is controlled to follow the virtual desired trajectory using only on-board sensors. This paper investigates the development of a fuzzy controller for automated lateral control during emergencies. The performance of the fuzzy controller is presented at 20m/s for a step lane change and a double lane change. The robustness of fuzzy controller is investigated with respect to change in tire parameters and the number of passengers.

  • PDF

A Study on Dynamic Map Data Provision System for Automated Vehicle (자율주행을 위한 동적지도정보 제공에 관한 연구)

  • Yang, Inchul;Jeon, Woo Hoon;Lee, Hyang Mi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.208-218
    • /
    • 2017
  • This study aims to develop the Vehicle Local Dynamic Map (V-LDM) and demonstrate its performance for providing dynamic map data efficiently to the vehicle control module. Firstly, the concept of the in-vehicle LDM has been established and then the system has been carefully designed according to the international standards. The high-precision digital map embedded in LDM has been designed to incorporate the lane-level information of road network, and the Dynamic Map protocol (DM protocol) which is a message protocol including the road data with dynamic traffic event data has been defined. The performance test of the proposed system has been conducted in the uninterrupted road section of Kyungbu expressway, showing that both of the data size and the elapsed time to finish the process are almost linearly proportional to the length of target road. Finally, it is recommended that the length of target road for DM protocol be less than 250m.