• 제목/요약/키워드: automated classification

검색결과 328건 처리시간 0.027초

Design and Implementation of an Automated Fruit Quality Classification System

  • Choi, Han Suk
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.37-43
    • /
    • 2018
  • Most of fruit quality classification has been done by time consuming, inaccurate and intensive manual labor. This study proposed an automated fruit grading system based on appearances and internal flavors. In this study, image processing technique and a weight checker were used to measure the value of appearance features and the near infrared spectroscopy analysis method was used to estimate the value of internal flavors. Additionally, I suggested 8x8x5x5 ANN based fruit quality classifier model to grade fruits quality. The proposed automated fruit quality classification system is expected to be very beneficial for many farms where heavy manual labor is usually needed for fruit quality classification.

Automated Link Tracing for Classification of Malicious Websites in Malware Distribution Networks

  • Choi, Sang-Yong;Lim, Chang Gyoon;Kim, Yong-Min
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.100-115
    • /
    • 2019
  • Malicious code distribution on the Internet is one of the most critical Internet-based threats and distribution technology has evolved to bypass detection systems. As a new defense against the detection bypass technology of malicious attackers, this study proposes the automated tracing of malicious websites in a malware distribution network (MDN). The proposed technology extracts automated links and classifies websites into malicious and normal websites based on link structure. Even if attackers use a new distribution technology, website classification is possible as long as the connections are established through automated links. The use of a real web-browser and proxy server enables an adequate response to attackers' perception of analysis environments and evasion technology and prevents analysis environments from being infected by malicious code. The validity and accuracy of the proposed method for classification are verified using 20,000 links, 10,000 each from normal and malicious websites.

공동주택의 공사정보분류체계를 활용한 적산 자동화 개념 모형 개발 (A Conceptual Model for Automated Cost Estimating Using Work Information Classification System of Apartment House)

  • Lee, Yang Kyu;Park, Hong Tae
    • 한국재난정보학회 논문집
    • /
    • 제10권1호
    • /
    • pp.15-24
    • /
    • 2014
  • 본 연구는 설계 과정의 분해, 시공 과정의 조립, 공사비 적산 등 공사의 계획과 관리에 걸친 모든 공사 관리의 업무를 체계화할 수 있는 공동주택의 공사정보분류체계를 제시하였다. 또한, 본 연구는 이 공사정보분류체계를 작업순서에 따라 관계형 데이터베이스(Data Base)로 구축 방법을 제시하였고, 구축된 데이터베이스를 근거로 적산 자동화 시스템 개념 모형을 구축하였다. 이러한 적산 자동화 시스템 개념 모형은 기존 적산 시스템들의 근본적인 문제점이었던 부적절함을 해소하여 공동주택 건설현장에서 효과적으로 적용가능한 과학적인 적산 시스템으로 활용할 수 있을 것이다.

미디어 분류를 위한 온톨로지 스키마 자동 생성 (Automated Modelling of Ontology Schema for Media Classification)

  • 이남기;박현규;박영택
    • 정보과학회 논문지
    • /
    • 제44권3호
    • /
    • pp.287-294
    • /
    • 2017
  • UCC와 SNS 등을 통해 개인 미디어가 다양한 방식으로 생성됨에 따라 미디어를 분석하고 인지하는 기술에 대한 연구가 진행되고 있으며, 이를 통해 객체 인지의 수준이 향상되었다. 그 결과 기존의 제목, 태그 및 스크립터 정보를 이용한 추론 방식과 달리 미디어에서 인지되는 객체를 활용하는 영상 분류 추론 연구가 수행되고 있다. 하지만 추론을 위한 미디어 온톨로지 모델링을 사람이 직접 수행해야 하기 때문에 많은 시간과 비용이 발생하는 단점이 있다. 따라서 본 논문에서는 미디어 분류를 위한 온톨로지 스키마 모델링의 자동화 방법을 제안한다. 영상에서 인지되는 객체의 빈도에 따른 OWL-DL 공리의 특성을 고려하여 온톨로지 모델 생성의 자동화 방안에 대하여 설명한다. 유튜브에서 수집한 15가지의 카테고리에 대한 영상으로부터 온톨로지 모델을 자동 생성하여 추론을 통해 미디어 분류의 정확도에 대한 실험을 수행하였다. 실험결과 15가지 영상 이벤트의 행위 약 1500개에 대하여 영상 분류를 수행한 결과, 86%의 정확도를 얻었고, 온톨로지 모델링의 자동화 방법에 대한 타당한 성능을 보였다.

Application of KITSAT-3 Images: Automated Generation of Fuzzy Rules and Membership Functions for Land-cover Classification of KITSAT-3 Images

  • Park, Won-Kyu;Choi, Soon-Dal
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.48-53
    • /
    • 1999
  • The paper presents an automated method for generating fuzzy rules and fuzzy membership functions for pattern classification from training sets of examples and an application to the land-cover classification. Initially, fuzzy subspaces are created from the partitions formed by the minimum and maximum of individual feature values of each class. The initial membership functions are determined according to the generated fuzzy partitions. The fuzzy subspaces are further iteratively partitioned if the user-specified classification performance has not been archived on the training set. Our classifier was trained and tested on patterns consisting of the DN of each band, (XS1, XS2, XS3), extracted from KITSAT-3 multispectral scene. The result represents that our classification method has higher generalization power.

  • PDF

Automated Training from Landsat Image for Classification of SPOT-5 and QuickBird Images

  • Kim, Yong-Min;Kim, Yong-Il;Park, Wan-Yong;Eo, Yang-Dam
    • 대한원격탐사학회지
    • /
    • 제26권3호
    • /
    • pp.317-324
    • /
    • 2010
  • In recent years, many automatic classification approaches have been employed. An automatic classification method can be effective, time-saving and can produce objective results due to the exclusion of operator intervention. This paper proposes a classification method based on automated training for high resolution multispectral images using ancillary data. Generally, it is problematic to automatically classify high resolution images using ancillary data, because of the scale difference between the high resolution image and the ancillary data. In order to overcome this problem, the proposed method utilizes the classification results of a Landsat image as a medium for automatic classification. For the classification of a Landsat image, a maximum likelihood classification is applied to the image, and the attributes of ancillary data are entered as the training data. In the case of a high resolution image, a K-means clustering algorithm, an unsupervised classification, was conducted and the result was compared to the classification results of the Landsat image. Subsequently, the training data of the high resolution image was automatically extracted using regular rules based on a RELATIONAL matrix that shows the relation between the two results. Finally, a high resolution image was classified and updated using the extracted training data. The proposed method was applied to QuickBird and SPOT-5 images of non-accessible areas. The result showed good performance in accuracy assessments. Therefore, we expect that the method can be effectively used to automatically construct thematic maps for non-accessible areas and update areas that do not have any attributes in geographic information system.

Automated quality characterization of 3D printed bone scaffolds

  • Tseng, Tzu-Liang Bill;Chilukuri, Aditya;Park, Sang C.;Kwon, Yongjin James
    • Journal of Computational Design and Engineering
    • /
    • 제1권3호
    • /
    • pp.194-201
    • /
    • 2014
  • Optimization of design is an important step in obtaining tissue engineering scaffolds with appropriate shapes and inner micro-structures. Different shapes and sizes of scaffolds are modeled using UGS NX 6.0 software with variable pore sizes. The quality issue we are concerned is the scaffold porosity, which is mainly caused by the fabrication inaccuracies. Bone scaffolds are usually characterized using a scanning electron microscope, but this study presents a new automated inspection and classification technique. Due to many numbers and size variations for the pores, the manual inspection of the fabricated scaffolds tends to be error-prone and costly. Manual inspection also raises the chance of contamination. Thus, non-contact, precise inspection is preferred. In this study, the critical dimensions are automatically measured by the vision camera. The measured data are analyzed to classify the quality characteristics. The automated inspection and classification techniques developed in this study are expected to improve the quality of the fabricated scaffolds and reduce the overall cost of manufacturing.

BIM기반 설계 품질검토 자동화를 위한 건축 관련 법규문장의 객체 및 속성 표현에 대한 체계화 접근방법 (Application of Classification of Object-property Represented in Korea Building Act Sentences for BIM-enabled Automated Code Compliance Checking)

  • 신재영;이진국
    • 한국CDE학회논문집
    • /
    • 제21권3호
    • /
    • pp.325-333
    • /
    • 2016
  • This paper aims to classify objects and their properties represented in Korea Building Act sentences for applying to BIM-enabled automated code compliance checking task. In order to conduct automated code compliance checking, it is necessary to develop translation process of converting the building act sentences into computer-executable forms. However, since Korea building act sentences are written in natural language, some of requirements are ambiguous to translate explicitly. In this regard, the building act sentences regarding building permit requirements are analyzed focusing on the regulation-specific objects and related properties representation from noun phrases within the scope of this paper. From 1977 building act sentences and attached reference regulations, 1200 regulation-specific objects and about 220 related properties are extracted and classified. In the application for the classification, object-property database is implemented and some of application using the database and the regulation-specific classification is suggested to support to generate rule set written in computable codes.

Classification of HTTP Automated Software Communication Behavior Using a NoSQL Database

  • Tran, Manh Cong;Nakamura, Yasuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권2호
    • /
    • pp.94-99
    • /
    • 2016
  • Application layer attacks have for years posed an ever-serious threat to network security, since they always come after a technically legitimate connection has been established. In recent years, cyber criminals have turned to fully exploiting the web as a medium of communication to launch a variety of forbidden or illicit activities by spreading malicious automated software (auto-ware) such as adware, spyware, or bots. When this malicious auto-ware infects a network, it will act like a robot, mimic normal behavior of web access, and bypass the network firewall or intrusion detection system. Besides that, in a private and large network, with huge Hypertext Transfer Protocol (HTTP) traffic generated each day, communication behavior identification and classification of auto-ware is a challenge. In this paper, based on a previous study, analysis of auto-ware communication behavior, and with the addition of new features, a method for classification of HTTP auto-ware communication is proposed. For that, a Not Only Structured Query Language (NoSQL) database is applied to handle large volumes of unstructured HTTP requests captured every day. The method is tested with real HTTP traffic data collected through a proxy server of a private network, providing good results in the classification and detection of suspicious auto-ware web access.

자동차 멀티미디어 시스템에서의 사진과 음악을 이용한 음악스토리 비디오 자동생성 기술 (Automatic Music-Story Video Generation Using Music Files and Photos in Automobile Multimedia System)

  • 김형국
    • 한국ITS학회 논문지
    • /
    • 제9권5호
    • /
    • pp.80-86
    • /
    • 2010
  • 본 논문에서는 차량 내의 멀티미디어 시스템에 장착되는 엔터테인먼트 기능 중의 하나인 음악스토리 자동생성 기술을 소개한다. 음악스토리 비디오 자동생성 기술은 개인이 소지하고 있는 휴대폰을 차량 내의 멀티미디어 시스템과 연결하여, 휴대폰 안에 저장된 음악과 사진의 결합을 통해 음악비디오를 자동으로 생성하는 멀티미디어 요소기술로서, 사용자에게 분위기에 맞게 음악을 들으면서 생성된 음악스토리 비디오를 즐기는 기능을 제공한다. 음악스토리 비디오 자동생성 기술에 대한 성능은 음악분류, 사진분류, 핵심단어 검출 등의 정확도와 생성된 음악스토리 비디오를 시청한 사용자의 MOS 결과를 통해 측정되었다.