• Title/Summary/Keyword: automated ROI extraction

Search Result 4, Processing Time 0.02 seconds

Long-term shape sensing of bridge girders using automated ROI extraction of LiDAR point clouds

  • Ganesh Kolappan Geetha;Sahyeon Lee;Junhwa Lee;Sung-Han Sim
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.399-414
    • /
    • 2024
  • This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.

The Extraction of ROI(Region Of Interest)s Using Noise Filtering Algorithm Based on Domain Heuristic Knowledge in Breast Ultrasound Image (유방 초음파 영상에서 도메인 경험 지식 기반의 노이즈 필터링 알고리즘을 이용한 ROI(Region Of Interest) 추출)

  • Koo, Lock-Jo;Jung, In-Sung;Choi, Sung-Wook;Park, Hee-Boong;Wang, Gi-Nam
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.1
    • /
    • pp.74-82
    • /
    • 2008
  • The objective of this paper is to remove noises of image based on the heuristic noises filter and to extract a tumor region by using morphology techniques in breast ultrasound image. Similar objective studies have been conducted based on ultrasound image of high resolution. As a result, efficiency of noise removal is not fine enough for low resolution image. Moreover, when ultrasound image has multiple tumors, the extraction of ROI (Region Of Interest) is not accomplished or processed by a manual selection. In this paper, our method is done 4 kinds of process for noises removal and the extraction of ROI for solving problems of restrictive automated segmentation. First process is that pixel value is acquired as matrix type. Second process is a image preprocessing phase that is aimed to maximize a contrast of image and prevent a leak of personal information. In next process, the heuristic noise filter that is based on opinion of medical specialist is applied to remove noises. The last process is to extract a tumor region by using morphology techniques. As a result, the noise is effectively eliminated in all images and a extraction of tumor regions is possible though one ultrasound image has several tumors.

Development of a Software Program for the Automatic Calculation of the Pulp/Tooth Volume Ratio on the Cone-Beam Computed Tomography

  • Lee, Hoon-Ki;Lee, Jeong-Yun
    • Journal of Oral Medicine and Pain
    • /
    • v.41 no.3
    • /
    • pp.85-90
    • /
    • 2016
  • Purpose: The aim of this study was to develop an automated software to extract tooth and pulpal area from sectional cone-beam computed tomography (CBCT) images, which can guarantee more reproducible, objective and time-saving way to measure pulp/tooth volume ratio. Methods: The software program was developed using MATLAB (MathWorks). To determine the optimal threshold for the region of interest (ROI) extraction, user interface to adjust the threshold for extraction algorithm was added. Default threshold was determined after several trials to make the outline of extracted ROI fitting to the tooth and pulpal outlines. To test the effect of starting point location selected initially in the pulpal area on the final result, pulp/tooth volume ratio was calculated 5 times with different 5 starting points. Results: Navigation interface is composed of image loading, zoom-in, zoom-out, and move tool. ROI extraction process can be shown by check in the option box. Default threshold is adjusted for the extracted tooth area to cover whole tooth including dentin, cementum, and enamel. Of course, the result can be corrected, if necessary, by the examiner as well as by changing the threshold of density of hard tissue. Extracted tooth and pulp area are reconstructed three-dimensional (3D) and pulp/tooth volume ratio is calculated by voxel counting on reconstructed model. The difference between the pulp/tooth volume ratio results from the 5 different extraction starting points was not significant. Conclusions: In further studies based on a large-scale sample, the most proper threshold to present the most significant relationship between age and pulp/tooth volume ratio and the tooth correlated with age the most will be explored. If the software can be improved to use whole CBCT data set rather than just sectional images and to detect pulp canal in the original 3D images generated by CBCT software itself, it will be more promising in practical uses.

Railway Track Extraction from Mobile Laser Scanning Data (모바일 레이저 스캐닝 데이터로부터 철도 선로 추출에 관한 연구)

  • Yoonseok, Jwa;Gunho, Sohn;Jong Un, Won;Wonchoon, Lee;Nakhyeon, Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.111-122
    • /
    • 2015
  • This study purposed on introducing a new automated solution for detecting railway tracks and reconstructing track models from the mobile laser scanning data. The proposed solution completes following procedures; the study initiated with detecting a potential railway region, called Region Of Interest (ROI), and approximating the orientation of railway track trajectory with the raw data. At next, the knowledge-based detection of railway tracks was performed for localizing track candidates in the first strip. In here, a strip -referring the local track search region- is generated in the orthogonal direction to the orientation of track trajectory. Lastly, an initial track model generated over the candidate points, which were detected by GMM-EM (Gaussian Mixture Model-Expectation & Maximization) -based clustering strip- wisely grows to capture all track points of interest and thus converted into geometric track model in the tracking by detection framework. Therefore, the proposed railway track tracking process includes following key features; it is able to reduce the complexity in detecting track points by using a hypothetical track model. Also, it enhances the efficiency of track modeling process by simultaneously capturing track points and modeling tracks that resulted in the minimization of data processing time and cost. The proposed method was developed using the C++ program language and was evaluated by the LiDAR data, which was acquired from MMS over an urban railway track area with a complex railway scene as well.