• 제목/요약/키워드: automated ROI extraction

검색결과 4건 처리시간 0.02초

Long-term shape sensing of bridge girders using automated ROI extraction of LiDAR point clouds

  • Ganesh Kolappan Geetha;Sahyeon Lee;Junhwa Lee;Sung-Han Sim
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.399-414
    • /
    • 2024
  • This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.

유방 초음파 영상에서 도메인 경험 지식 기반의 노이즈 필터링 알고리즘을 이용한 ROI(Region Of Interest) 추출 (The Extraction of ROI(Region Of Interest)s Using Noise Filtering Algorithm Based on Domain Heuristic Knowledge in Breast Ultrasound Image)

  • 구락조;정인성;최성욱;박희붕;왕지남
    • 산업경영시스템학회지
    • /
    • 제31권1호
    • /
    • pp.74-82
    • /
    • 2008
  • The objective of this paper is to remove noises of image based on the heuristic noises filter and to extract a tumor region by using morphology techniques in breast ultrasound image. Similar objective studies have been conducted based on ultrasound image of high resolution. As a result, efficiency of noise removal is not fine enough for low resolution image. Moreover, when ultrasound image has multiple tumors, the extraction of ROI (Region Of Interest) is not accomplished or processed by a manual selection. In this paper, our method is done 4 kinds of process for noises removal and the extraction of ROI for solving problems of restrictive automated segmentation. First process is that pixel value is acquired as matrix type. Second process is a image preprocessing phase that is aimed to maximize a contrast of image and prevent a leak of personal information. In next process, the heuristic noise filter that is based on opinion of medical specialist is applied to remove noises. The last process is to extract a tumor region by using morphology techniques. As a result, the noise is effectively eliminated in all images and a extraction of tumor regions is possible though one ultrasound image has several tumors.

Development of a Software Program for the Automatic Calculation of the Pulp/Tooth Volume Ratio on the Cone-Beam Computed Tomography

  • Lee, Hoon-Ki;Lee, Jeong-Yun
    • Journal of Oral Medicine and Pain
    • /
    • 제41권3호
    • /
    • pp.85-90
    • /
    • 2016
  • Purpose: The aim of this study was to develop an automated software to extract tooth and pulpal area from sectional cone-beam computed tomography (CBCT) images, which can guarantee more reproducible, objective and time-saving way to measure pulp/tooth volume ratio. Methods: The software program was developed using MATLAB (MathWorks). To determine the optimal threshold for the region of interest (ROI) extraction, user interface to adjust the threshold for extraction algorithm was added. Default threshold was determined after several trials to make the outline of extracted ROI fitting to the tooth and pulpal outlines. To test the effect of starting point location selected initially in the pulpal area on the final result, pulp/tooth volume ratio was calculated 5 times with different 5 starting points. Results: Navigation interface is composed of image loading, zoom-in, zoom-out, and move tool. ROI extraction process can be shown by check in the option box. Default threshold is adjusted for the extracted tooth area to cover whole tooth including dentin, cementum, and enamel. Of course, the result can be corrected, if necessary, by the examiner as well as by changing the threshold of density of hard tissue. Extracted tooth and pulp area are reconstructed three-dimensional (3D) and pulp/tooth volume ratio is calculated by voxel counting on reconstructed model. The difference between the pulp/tooth volume ratio results from the 5 different extraction starting points was not significant. Conclusions: In further studies based on a large-scale sample, the most proper threshold to present the most significant relationship between age and pulp/tooth volume ratio and the tooth correlated with age the most will be explored. If the software can be improved to use whole CBCT data set rather than just sectional images and to detect pulp canal in the original 3D images generated by CBCT software itself, it will be more promising in practical uses.

모바일 레이저 스캐닝 데이터로부터 철도 선로 추출에 관한 연구 (Railway Track Extraction from Mobile Laser Scanning Data)

  • 좌윤석;손건호;원종운;이원춘;송낙현
    • 한국측량학회지
    • /
    • 제33권2호
    • /
    • pp.111-122
    • /
    • 2015
  • 본 연구에서는 모바일 레이저 스캐닝 데이터로부터 철도 선로탐지 및 선로모델 추출을 위한 방법을 제시하였다. 제안된 방법은 크게 세 단계로 구성된다. 첫째, 레이저 포인트로부터 잠재적인 철도 선로지역을 탐지하고, 초기 철도 선로궤적 방향을 추정한다. 둘째, 철도 선로에 관한 선 지식을 이용하여 첫번째 스트립에서 초기 선로위치를 결정한다. 여기서, 스트립은 국부 탐색공간을 나타내며 철도 선로궤적에 수직인 방향으로 정의된다. 마지막으로, 초기 선로위치에서 GMM-EM기반 분류방법을 통해 선로 포인트들을 탐지한 후 초기 선로 모델을 생성하고 스트립을 데이터 처리 기본단위로 하여 tracking by detection관점에서 연속적으로 선로모델을 생성하였다. 제안된 방법의 주요 특징은 다음과 같다. 첫째, 이전 스트립에서 생성된 선로 모델을 가이드 라인으로 다음 스트립에 전파되어 국부 탐색영역을 예측하여 선로 포인트를 탐지하는 하는데 있어서 처리 복잡성을 줄일 수 있었다. 둘째, 선로 포인트 탐지와 선로 모델링을 동시에 진행 함으로써 데이터 처리 시간을 최소화 할 수 있었다. 개발된 알고리즘은 C++ 프로그램 언어로 구현되었고 도시지역에서 MMS 측량을 통해 취득된 LiDAR 데이터(경부선 일부 구간)를 이용하여 성능 테스트를 진행하였다.